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Abstract

Three mechanisms which can induce thermo-hydraulic oscillations at
near-critical and at super-critical pressures are distinguished and dis=-
cussed.

Experiments show that low frequency flow oscillations are most pre-
valent in systems of practical interest, A quantitative formulation and
analysis is therefore presented concerned with predicting the onset of
these "chugging" oscillations as function of fluid propertieé, system
geometry and operating conditions.

The problem is analyzed by perturbing the inlet flow, 1ihearizing'
the set of governing equations and integrating them along the heated duct
to obtain the characteristic equation. The latter is given by a third
order exponential polynomial with two time delays.

Conditions .leading to aperiodic as well as to periodic flow
phenonema are investigated, The first pertains to the possibility of

flow excursion the latter to the onset of flow oscillation.

Stability maps and stability criteria are presented which, previously,
were not available in the literature, They can be used to determine:
a) The region of stable and unstable operation and

b) The effects which various narameters have an edither nramntine
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1, Research Objectives

This research was conducted to determine the fundamental nature of
- oscillation, and of instabilities in the flow of cryogenic fluids with heat
addition.
fhe investigation was motivated by the fact that severe oscillations
have been experienced in rocket engines heat exchangers utilizing oxygen
and hydrogen at both subcritical and supercritical pressures.

The particular objectives of this investigation were:

1. To distinguish a number of mechanisms which may be respon-
sible for thermally induced flow oscillations at near cri-

tical and at supercritical pressures.

2, To present a quantitative formulation of the mechanisms
which appear to be most significant from the point of sys-

tem design and operation.

3. To predict the onset of these oscillations in terms of the

geometry and of the operating condition of the system,

4. To analyze the consequences of the theoretical predictions -




2. Summary and Conclusions

1. Mechanisms Leading to Unstable Operation

Three mechanisms which can induce thermo-hydraulic oscillations at near
critical and at supercritical pressures have been distinguished,

One is caused by the variation of the heat transfer coefficient at the
transposed i.e., at the pseudo-critical point.

The second is caused by the effects of large compressibility in the
critical thermodynamics region.

Finally, the third mechanism is caused by variations of flow character-
istics brought about by variations of fluid density during the heating pro-

cess. The propagations of these variations through the system introduce

various time delays which, under certain conditions, can cause unstable flow,
This last mechanism, which induces low frequency oscillations, was
investigated in detail because available experimental data show that this

typé of flow oscillations is most prevalent in systems of practical interest.

2., YFormulaticn of the Problem

The problem was formulated in terms of an equation of state and of

 three field equations describing the conservation of mass, energy and mo-

mentum.




3. The Characteristic Equation

The characteristic equation is given by a third order exponential poly-

nomial with two time constants, (see Eq. V-15). It is expressed in terms of

., fluid properties, of system geometry and of operating conditions by means of

influence coefficients (see-Eq. V-16 through Eq. V-22).
The influence coefficients express the effects of the inlet flow

perturbation and of the space lag perturbation on the various pressure drops

of the system. By introducing various definitions for the average, for the
log mean and for the mean densities and velocities. it is shown that each v
pressure drop is weighed with respect to a different velocity. This

result, which follows, from the integration of the governing set of

equations, i.e., from the distributed parameter analysis, could not have

" been obtained from an analysis, based on "lumped" parameters. Consequently

the accuracy of an analysis based on this latter approach can be estimated
by means of the results obtained in this investigation.

The characteristic equation was used to obtain stability maps and
stability criteria which, previously, were not available in the literature.
The stability maps and criteria can be used to determine

a. The region of stable and of unstable operation and

i
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The stability problem at intermediate subcooling will be considered in a

future report.

4. Excursive Flow Instability

It was shown that, at supercritical pressures, a flow system with heat
addition can undergo flow excursions because the hydraulic characteristics
of the system are given by a cubic relation between the pressure and the
mass flow rate (see Eq. VI-20). The latter is a consequence of density
variations in the system.

This excursive flow instability, at supercritical pressures;is the
equivalent of the "Ledinegg" excursive instability in boiling systems at
subcritical pressures. ihis equivalence is supported by experimental data
(see Figure VI-1) which show ' that in both pressure regions, the flow system
has similar hydraulic characteristies.

A stability criterion which predicts the onset of the excursive in-
stability was derived in terms of system geometry, of fluid properties and
of cperating conditions, 1i.e., of system pressure, flow rate, inlet temp-
erature and power input (see Eq. VI-13). Various aspects of this type of

instability are discussed together with proviéions required to prevent its



It was shown further that, when the inertia can be neglected in a system

with low inlet subcooling then the characteristic equation reduces to a first

order exponeniial polynomial with one time delay (seé Eq. VII-16).

For such a system the flow will be unconditionally stable if the

stability number Ng (defined by Eq. VII-39) is larger than unity. If

Ng is smaller than unity, stable operation is still possible if the angular

.- frequency of the inlet perturbation is larger than the critical one (given

in Eq. VII-40) or if the transit time is shorter than the critical one

(given by Eq. VII-41);
The region of stable and of unstable operation are shown in a stability
map (see figure VII-2) which can be used to analyze the effects that various

parameters have on the propensity to induce or to prevent flow oscillations

(see Section VII.3).

Although ithe analyiical predictions have not yet been tested quantita-
tively, the trends predicted by this map and by the stability criterion
(see Eq. VII-22 or Eq. VII-29) are in qualitative agreement with experimentaliir

observations (see Section VII.3).

6. Flow Oscillation at High Inlet Subcooling

It was shown that when the efferts nf the twun tima delave ran ha




‘must go through a maximum at intermediate range, (see Section VIII-2).

7. Significance of the Results

The results of this analysis indicate several improvements in the design
and/or in the operating conditions which can be mdde to prevent the onset of

flow excursions or of flow oscillations. These are discussed in more detail

‘in relation to each type of instability (see Sections VI-2, VII-3, and

III-2). .

It was shown that the predominance of a particular parameter results
in a particular wave form and in particular frequency (see Eq. VII-40 and
Eq. VIII-17). igis result indicates that the primary cause of the instability
can be determined from the trace of flow oscillations.

Perhaps the ré;ult of greatest significance revealed in the present
investigation is the similarity between the characFeristic equation which
predicts '"chugging' combustion instabilities and the characteristic equation
which predicts the thermally induced flow oscillations for fluids in the
near critical and in the supercritical thermodynamic region. Since it is
well known that "chugging' combustion instabilities can be stabilized by an
arprorriate servo-control mechanism, the results of this investigation

indicate that low freauencv flow oscillations. at near critical and at

mom



3. Recommendations

The recommendations listed in the four tasks below, define the effort

needed to complete and to verify the results obtained in this investigation.

1'

Verify the stability criteria based on the second and first order
exponential polynomials which have been derived in the course of

these investigations. For this purpose use available experimental
data for various fluids at subcritical and at supercritical pres-

sSures,

From the characteristic equation given by the third order exponenti:

polynomial with twe time delays (Eq. V-15) derive stability maps anc

stability criteria applicable to the entire range of subcoolings.

Test these results against available experimental data.

Mcdify the characteristic equation to take into account the effects

of the entire flow system i.e., of the flow loop. In particular in-

clude the effects of the inertia of the liquid in the storage tank & _

in the supply lines together with the flow and elastic characteristi

of these lines,
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4. Nomenclature
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Integrals given by Eq. IV-94, IV-97, IV-101, IV-
Enthalpy (HM'lq

Latent heat of vaporization [HM'1]

Inlet subcooling [HM'I']

coefficient of the inlet flow restriction -
coefficient of the exit flow restriction -
Total length of the heated duct [L—)

Mass in the "heavy'" fluid regién

(w2

Mass in the "light" fluid region

(-2 ]

Stability number defined by Eq. VII-39

per unit area
per unit area

system pressure [ﬁL'lT'zl
Pressure rise of the external system [Ml'lT'z-]
Steady state pressure drop (SSPD) across inlet

orifice defined by Eq. III-28 Lm'lrz-]

107, Iv-111,

SSPD due to friction in the heavy "fluid" region, defined

[ML'lT"Z B
SSPD due to gravity in the heavy "fluid" region,

{ M-17-27)

by Eq. III-31

defined by Eq. III-30
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SSPD due to friction of the light fluid region,

defined by Eq. Tv-112, [ m-1r2]

SSPD across exit flow restriction defined by Eq. IV-122. ( M)

heat flux density {mﬂr‘l-\

total heat input rate [HT'1 -\

gas constant Y L2’I."'?'Q‘1 7

Exponent of the inlet velocityﬂperturbation [ 1 7
Stability criterion defined by Eq VI-28

Period of the inlet velocity perturbation

time -

velocity [ LT'I]

steady state velocity in the "heavy" fluid region LT-1

S.5. velocity of the light fluid region defined by Eq. IV-28.(L)

'8.S. velocity at the exit from the duct

defined by Eq. IV-31.
average velocity in the "light" fluid region
defined by Eq. IV-32.
Log mean velocity of the "light" fluid region
defined by Eq. IV-36

mean velocity of the "light" fluid region

(L)
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velccity perturbaticn of the "light' fluid region
givern by Eq. IV-30.

specific volume of the heavy fluid (L3M'l j
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Green letters
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heated perimeter EL—l

space lag defined by Eq. III-20 (1 h
perturbaticn of the space lag LY

defined by Eq. IIX-23.

amplitude c¢f inlet velocity perturbation f 11t j

time lag, defined by Eq. III-18 [T)

AT = teotal transit time, defined by Eq. III-63 ( 'I-\

critical transit time, defined by Eq. VII-4l.

characteristic reaction frequency, defined by Eq. IV-21.




c\) =

angular frequency of the inlet velocity perturbation

critical angular frequency defined by Eq. VII-40.

QRS
fl

dimensionless exponent defined by Eq. VII-8.

Subscripts

0, 1, 2, 3, 4 correspond to the locations of the duct

indicated on Fig. II-2.
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I. Introduction

I.1 Thke Probiem and Its Significance

A fluid in the vicinity of the critical point is an efficient heat
transfer medium because of the large specific heat and of the large co-
efficient of thermal expansion. Consequently, the demand for increased
efficiency of several advanced systems generated an interest in employing
fluids at critical and supercritical pressures either as gooling or working
media. For example, nuclear rockets, power reactors, high pressure once-
through boilers, regenerative heat exchangers for rocket engines and a new
'sea water desalinization process are designed to operate in the critical
and the supercritical thermodynamic region. These developments maae it
necessary to obtain data on and to improve the understanding of the thermal
and the flow behavior over a broad range of fluid states.

A great number of investigations conducted for such a purpose have
revealed that, in the critical as well as in the supercritical Ehermo-

dynamic region, flow and pressure oscillations may occur when certain



Furthermore, in nuclear reactor systems flow and pressure oscillations may
induce divergent power oscillations leading to the destruction of the
entire system. Consequeﬁtly, there is considerable practical interest and
incentive to investigate, quantitatively, the conditions leading to the

inception of these oscillations.

I.2 Prewvious Work

Severe pressure and flow oscillatﬁiﬁons were observed in expe;imgnts
performed with rviarrirous fluiﬁc% 7in the rsqipe,rcritrical thermo_d_yn_ami_c rgg_ion.
Such o‘scillations were reported by Schmidt, Eckert and Grigull [11 , (ammonia);
Goldman [2, 3] » (water); Firstenberg [4] , (water); Harden (51 s, (Freon-114);
Harden and Boggs 16—3 , (Freon-ll4); Walker and Harden [71 , (water, Freon-114,
Freon-12, carbon dioxide); Holman and Boggs LS‘}, (Freon-12); Hines and '
Wolf [91 (RP-1 and diethycyclohexane); Platt and Wood [10‘\ (oxygen);
Ellenbrook, Livingood and Straight [11-&, (hydrogen); Thurston [121, (hydrogen,
nitrogen); Shitzman [13, 141(water); Semenkover {15‘3 (water); Cornelius and
Parker [‘16-& (Freon-114); Cornelius [17—\ (Freon-114); and Krasiakova and
Glusker {18} (water).

For a given fluid the characteristics (frequency and amplitude) of

thaeca nerillarinne variad with ansratrine ronditiona. Tn ceneral. two trvoes

LT T AT
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and 380 psi peak to peak) were repcrted by Hines and Wolf [9—1for RP-1,
Three classes of pressure oscillations in the supercritical region
were cbserved irn the experiments of Thurston [12]; these were described as:
i) Open-open pipe resonance observed at medium and high flow rate.
This mode is associated with the fundamental wavelength of an
opern~cpen pipe.
2) Helmholtz rescnance, assoclated with a resonator composed of a
cavity connested to an external atmesphere via an orifice or meck.
3% Supercritical oscillaticns éppearing usually at low fiow rates.
Hires and WOlf[jé], however, report only two general types of oscilla-
tions: a high frequency (3000-75000 cps) oscillations audible as a clear
and steady scream and an oscillation with a lower frequency (600-2400 cps)
which wés audible as a chugging cr pulsating noise. The dominant frequencies
of these oscillations did not correspend to simple acoustic resonant fre-
quencies for the tubes.
Cornelius and Parker{16, 17| describe in detail the two types of
osciliations and ncte that the frequency of the acoustical oscillations

decreases with temperature whereas the frequency of the chugging oscillations

fmrvrracne withk Famrmarotiiva Nrracedirnatle hoath +uvnoc AfF ~rrdTTarinne nArnvad




Several investigators (12, 13 14) note that the appearance of oscil-

lations occurs when the temperature of the heating surface exceeds the

"pseudo critical” or the "transposed" critical temperatures, i.e., the tem-
perature where thé specific heat reaches its maximum value (see Figure Al in
Appendgx A).' Oscillations were not observed if the inlet temperature was
above this temperature. From this it was concluded that the mechanism for

" driving the oscillation occurred only when a "pseudo liquid' state was present
2 P

in some parts of the heated duct,

Firstenberg (4) attributes the oscillations to the variations of the heat
transfer rates to the fluid, whereas Goldman (2, 3) explains the oscillations
as well as the steady state heat transfer mechanism in the critical and super-
critical thermodynamic region as "boiling like" phenomena associated with non-
equilibrium conditions., According to Goldman, below the pseudo-critical temper-
ature the fluid is essentially a liquid, above this temperature it behaves as a
gas. At the pseudocritical temperature, the density gradient and the specific
heat reach maximum values giving an indication of the energy required to over-
come the mutual attraction between the molecules., The fluid in the immediate

vicinity of the heated wall is in a gas-like state; whereas the bulk fluid may

A Y - - - . s ® moaa R . - - - - . -
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Iike cluétérs into gas-iike aggregates tske place. Geldman ccnsiders this
prezess to be similar to the formation of tubkles in liquids duriag beiling
. at subcritical pressures.
The ccnditions under which oscillations occur were summarized by
. Geldran as follows:
1} FHeat transfer with "whistle" (i.e., with cscillatiens) occurs
only at high heat flux demsities and with bulik temperatures lower
than rhe pseudccritical temperature.
Z) Av a given flow réte and inlet temperature, whistles occur at

higher flux densities for hLigher pressure levels.

(o
Nt

At given flow rate and pressure, whistles cccur at lewer heat

flux densities for higher inlet temperatures.

‘ﬁ' ' 4) At a given pressture and inlet temperatvre, whistles occur at
higher heat flux densities fer higher flow rates.

5} Whistles can be produced with various lengths of the test section, e
Lut the heat flux cr inlet temperature must te increased to bring .

t about if the tute is shortened,
— Visval observation that boiling-iike phemcmena can exist at supercritical

pressures was reported by Griffith and Saberski[}é}in éfperiments conducted wi

111 —
.



Hines and Wolf [91 attribute the appearance of the flow oscillations
at supercritical pressures to the variations of liquid viscosity. They
note that a small change of temperature near the critical point results
in a large change of viscosity. Conseqpently,.; sudden increase in wall
temperature could cause a thinning of the laminar boundary layer due to -
variation of the viscosity. Thinning of the boundgry layer would result
in a drop of the wall temperature and a corresponding increase of viscosity.
This would cause a thicker boundary layer and produce another rise of tem-
perature, thus repeating the cycle. It Qas shown by Bussard and Delauer [:ij
and by Harry{ Zq]tﬁat a viscosity-dependent mechanism can induce an unstable
ﬁloﬁ in single phase f}qw systems when the absolute gas temperature is in-
creased by a factor of 3.6 or more. Such flow oscillations were observed
by Guevara et a1<;g3:|with helium flowing through a uniformly heated
channel.

Harden and co-workers[;S, 6, 7] concluded from their eiperiments that
sustained pressure and flow oscillations appeared when the bulk fluid reached
a temperature at which the product of the density and enthalpy has its maximum
value. This explanation was, however, criticized by Cornelius [173.

Cornelius and Parker [16, 171 postulate that both acoustical and the

1



attribute the appearance of chugging oscillations to "boiling-like" phenomena

and a sudden improvement of the heat transfer coefficient,

An approximate
numerical sclution verified the importance of the heat transfer improvement
in triggering and maintaining oscillations.

Of particular interest to the analysis presented in this paper are the
experimental results of Semenkover, [15] and of Krasiakova and Glusker [183~
for water at 250 atm., For a constant power input 6 to the system their data
show a pressure versus mass flow relation that is illustrated in Figure I-l.

It can be seen that for large values of inlet enthalpy i, there is a monotoni
increase of pressure drop with flow rate,

At a certain lower value of i,
the curve shows an inflection point.

For still lower values of inlet enthalp
there is a region where the pressure drop decreases with increasing flow rate

Such a pressure drop-flow rate relation occurs in boiling systems and gives
rise to an excursive type of instability which was analyzed first by Ledinegg
LZQ] and by numerous investigators since.[és - 47J° Consequently, the data
of [15D 18J tend to confirm the similarity between instabilities.observed
during subcritical boiling and those observed at supercritical pressure

suggesting therefore a common mechanism.

I.3 Purpose and Outline of the Analysis

From the preceeding brief review of the present understanding of flow
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The analysis presented in this paper has four objectives:

1) Te distinguish a number of mechanisms which may be responsible for
thermally induced flow oscillations at nearcriﬁical and at supercritical
pfessures.

2) Tc present a quantitative formulation of the mechanism which appears to
be most significant from the point of view of system design and operation

3) To predict the onset of these oscillations in terms of the geometry and
of the operating conditions of the system,

4) To aralyze the consequerces of the thecretical predictions and to suggest

impravements whereby the orset of these c¢scillations can be elimirated.

The particular mechanism which is formulated ard analyzed in this paper
is based or the effects of time lag and of density variations. It is well
krown that these effects can induce combustion instabilities in liquid pro-
pellant rocket motors as discussed by Crocce and Cheng [ﬁS-\. It was shown
by Profos[49—\ , Wallis and Heasley(SO_X and by Bourd [51] that the effects
of time lag and of density variations can also induce unstable flow in
boiling mixtures at subcritical pressures. The suggested similarity of
flow oscillations observed at supercritical pressures with those observed in

two phase mixtures at subcritical pressures prompts us to formulate and



fSOJ and by Bouré ESLJ in two respects: the formulation and the assumptions -

are the same. In particular, it is assumed that the density of the medium
is a function of enthalpy only, The effects of pressure variations are,
therefore neglected.* As noted by Wallis and Heasley [50] this assumption
results in the decoupling of the momentum equation from the energy and the
centinuity equations. The momentum equation can be integrated then separately
after the velocity and density variations are obtained from the continuity and
the energy equations. Following Bouré [51] the problem is formulated in terms
of an equation of state and of three field equations describing the conser-
vatlicn of mass, energy and mementum, 7

Apart from the fact that the aralyses of Wallis and Heasley'ESQ] and
of Bouréd [5{] were derived to predict unstable flew in beiling two prase
cixtures the present analyses (concerned witn f1§w oscillaticns at nesare
critical and at supercritical pressures) differs from theirs in two respects:
1) tne form of the constitutive equation of state is different, 2) the
characteristic equation describing the onset of oscillations is different.
From tris characteristic equation, we shall derive stapility maps and
stability inertia which, previously,were not available in tne literature,

Tre cutline of the paper is as follows. In Chapter II some general

ccmments aTe made regarding 1) tne nature of the tnermally induced flow

toOominm

P



Chapter VI which predicts the onset of an excursive type of instability ¢

supercritical pressures,* This excursive instability at supercritical

pressure is the equivalent of the so called Ledinegg excursive instabilit
for boiling at subcritical pressures. The effect of time lags in inducir
flow oscillations is analyzed in Chapters VII and VIII which consider fi1
and second order expotential polynomials., Stability diagrams which pred:

the regions of stable and unstable flow in terms of the operating paramet

are given in these two chapters together with suggested improvements whe:

the onset of oscillations can be eliminated. The recommendations for

future work and the conclusions are given irn Chapters IX .

The status of the present understanding of thermodynamic phenomena that 1

e

place in the critical thermodynamic region is discussed in Appendix A.

- I.4 The Significance of the Results

<A

Three mechanisms which can induce thermo-hydrauiié oscillations at

i

supercritical pressures have been distinguished in thié>paper. One is

il

caused by the variation of the heat transfef cbefficient at the transpos¢

lige

i.e., pseudo critical poiﬁt.' Théxéecond is causéd'byiihe éffects of lar;

compressibility and the reshltanﬁ low velocity of sound in the criticsal

region. Finally, the third mechanism is caused by the”iaréé variation o:

~ .. ~




under certain conditions, can cause unstable flow, This last mechanism, that
induces low frequency oscillations, is investigated in detail because ex-

perimental data show that this type of oscillation is most prevalent.

It is shown that at supercritical pressure unsteady flow conditions
both excursive and oscillatory can occur. A characteristic equation is
derived that predicts the onset of flow instabilities caused by density
varigtions in the critical and supercritical thermodynamic region. The
same characteristic equatipn can be used to predict the onset of flow
instabilities in teiling at subcritical pressure, if the effect of the
relative velocity between the two phases can be neglected. Experimental
‘evidence shows that this effect be;omes negligible at reduced pressures
abeve say 0.85. Consequently, at ne ar critical and supercritical pressures,
the chdracteristic equation, which is expressed in terms of system geometry
and cper;tive conditions, can be used to determine:

a) The region of stable and unstable behavior.

t) The effect which various parameters may have on either promoting

or cn preventing the appearance of flow oscillationms.

From this characteristic equation simple "rule of thumbs" criteria are

also derived based on the assumption that one or the other of the various




and Chegg[l8]to predict combustion instabilities of liquid propellant
rocket mctors.* It is well established in the combustion literature th:
& servc-control mechanism can be used to stabilize the low frequency con
bustion imstability. The similarity of the characteristic equaticns ig,
therefcre, significant because it indicates that stable operation could
be insured alsc in the nearcritical and in the supercritical region by

using an appropriately designed servo-control mechanism.







II. General Considerations .

II.1 e System and the Thermodynamic Proc

In order to understand the mechanisms of the thermally induced flow
oscillations at supercritical pressures, it is necessary to examine
Eriefly the system and the thermodynamic process.

The system of interest is shown in Figure II-1. It consists of a
fiuid flowing through a heated duct of leagth 1. Without loss cf
genefality it will be assumed that the duct is uniformly heated at a
rate of é. Two flow restrictions are located one at the entrance, the
cther at the exit of the duct.

The thermodynamic process starts with the fluid at a supercritical
pressure P, entering the heated duct with velocity U, . The temperature
T, of the fluid at the inlaet is well below the critical temperature of the
fluid under ccansiderations. As thé energy is being transferred from the
heated duct to the fluid its temperature T, specifié volume v, and enthalpy
i, witl increase. Thus, the temperature T3, at the exit may be coﬁsiderably'
above the critical temperature. In a number of systems of practical interest
it can be assumed that this process takes place at an approximately ccustant

pressure.
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The present understanding of the thermodynamic properties and phenomena

at nearcritical and supercritical pressures 1is reviewed in Appendix A.

It is shown there that at these pressures the fluid has the characteristics

of a liquid when the temperature is sufficiently below the critical one.
However, if the'temperature is increased sufficiently above the critical
terperature, the fluid will have the characteristics of a gas. This is

illustrated in Figure II-2 which is a plot of the specific volume and of
the temperature versus the enthalpy for oxygen at a reduced pressiure cf

Pr = 1,1.

It can be seen from this figure that at low enthalpies the specific
volume is essentially constant, this is a characteristic cf liquids. As
fhe enthalpy increases the specific Qolume increases approaching values
predicted bty the perfect gas law. It can be seen also that this change
from a liquid-like state (region @ - @) to a gas-like state (region

@ - @) occurs over a transition region denoted by @ - @
on Figure II-2.

It appears, therefore, that at supercritical pressures the relation

btetween the specific volume and the enthalpy can be approximated by con-

sidering three regions: a liquid-like, a transition and a gas like region.
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approximaticn for describing the relation between the specific vciume
and the enthalpy. It is assumed, therefore, that the "heavy" fluid (of
constant density) persists until the transition point is reached; above
this point the fluid will have the properties of the ‘light® phase. It
remains now to define this transition point.

In boilirg at subcritical pressure the transition from the heavy te
the light phase correspcnds te rthe onset cf beiling., Comseguently, it
will be assumed that in thte mnearcritical regionm the transition point
cerresponds to the enthalpy at saturation temperature,

At supercritical pressures it wiii be assumed that the transition point
corresponds to the transpcsed crirical point, i.e., tc the pseudc critical
pcint which is defined as the peint where Cp reaches its maximum value.

It is discussed iﬁ Appendix A that the locus of pseudo critical points
can be regarded as the extension cf the saturation line in the super-

critical region.

IT.2 Iime Lag and Space lag

it is of interest to consider now the timewise and spacewise des~
criptien of the process.*

TFf we fallow a particle from the time it enters the heated sectinn




aad i1 at the inlet to vy and 13 at the exit (see Figure I1I-3). fn
view of thke "two-regicn" approximation we would note that the transition

frem the "heavy" to the "light" fluid occurred when the properties (specifically
the enthalpy) reached values that correspond to the transition point, The

time elarsed btetween the injecticn of the heavy particle in the heated duct

and its transformation to the "light" fluid will te denoted as the time

L T,

T

~r

i3 =f interest also to ccnsider tke spacewise descripticn of the
recess, I this case the time lag must be repiaced by the srace lag
which is a vectorial quantity indicating the location in the duct wkere
the tra=sforration from the "heavy“ to the "light" fluid takes place.
Thke space lag is denoted by )\ on Figure II-3. Of course, the space
1ag can te related to the time lag when the particle velocity is known.
Like in cortustion, the lccation in the duct where the transférmation
takes place can te regarded as the source of theylighf'fluid. It is
otvicus that the flow properties in the regicn occupied ty theulighf'
fiuid will depend upon the intensity of this source. If it is assumed
that tte injectica rate of the"heav;'fluid is censtant and that thé time

312l srace 1ags were constang,then the intensity of the source would also




and pcpulation, of flow regimes, of the heat transfer coefficient, etc.
Consequently, the strength of the source may fluctuate even when the in-
jectior rate is kept constant. It is evident also that variatioms of
inlet velocity will introduce additional effects.

The nucleation and evaporation at subcritical pressures and the
transfermation of "heavy" clusters to "light" clusters at supercritical
pressures are rate processes that occur during and have an effect upon
the length of the time lag. Bothk cf these transformation rates are af-
fected by the pressure, temperature and by other rate processes such as
the rate cf energy transfer, flow rate, etc. If one of these factors
changes or fluctuates, the transformation rates will fluctuate also
resulting in a fluctuation of the time lag, i.e., In the fluctuation
cf the source. Since the source affects the flow conditions in the "light"

fiuid regicn the flow in this region may become oscillatory.

II.3 Crganized Oscillations
Oscillaticns of a system can be always produced if properly excited.
Such oscillations can be distinguished by a characteristic time, i.e.,

pericd if the process is periodic or by a relaxation time if it is
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at subcritical pressures, is not excited. The fluctuations at one pcint

do not have any effect on other fluctuations somewhere else in the system.

Since the integrated effects of these fluctuations vanish they dc not pese

a protlem,

In the case cf an organized oscillgticn the transformaticn process
will te excited by one or more cocrdinating processes such as the oscillation
of :he‘inlet fiow rate, of the heat transfer coefficient, etc. The exciting
force fer maintainimg the osciilation of the coordinating process is in
turn provided by the transformation process. For example, in bciling sys-
ters osciliaticns of Pressure will affect the saturation temperature which
may induce oscillations in the rates of evapcration. These in turn may
induce flow oscilliations and provide the excitation force for maimtaining
the pressure flu;tuations.

The fundamental character of érganized oscillaticns is tkhat a well
defined correlation exists between fluctuaticns at twe different pcints
or instants, In other words that a disturbance is propagated; ioe;D dis-
placed in time aﬁd space through the system. When these organized cscil-
lations are present their integrated effect dces not vanishk whence ;he inﬁeree

in these oscillaticns., Furthermore, an oscillatory system may become unstatl




I11.4 The Mechanism of Iow Freguenc Chuggin Oscillation at

Supercritical Pressures

o

It was noted 1n the preceaing section that thke characteristic of
organized oscillaticns is the propagation of disturbances through one system.
These disturbances can be variations of density, pressure, enthalpy, entropy,
etc. 1In this section we shall examine the effects which these propagations
may have.on the oscillating propensity of the system., In particular, we
shall consider the propagation of density disturbances and the effect of the
time lag, i.e., of the space lag. The effects of pressure waves are discussed
in sgcﬁign ii-7 together with the cther mechanisms which may induce flow
escillations in the nearcritical and supercritical regions.

We ncte that the effect of Ehe time lag in inducing combusticn in-
stabilities was already analyzed by Summerfeld [523 » Crocco and Cheng[i&él
amcng otters, 1In boiling systems, this effect was already analyzed by
Profns [4911, Wallis and Heasley[‘SO—land by Bouré.[Sq. In these analyses
the flow was assumed to be homogensous, i.e., the effect of the relative
veiocity berween the gas the liquid phase was neglected. A density prcpa-
gation equation, applicadle to two-phase mixtures, which takes this effect
into account was formulated in [531 and solved in [54, 55\ .

Tat 1z avamina mnw rtha afforre nf thoe Finita raroe Af nranacarion ard
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tte time a presstre wave propagates back and forth through the tank and
the feed system, then the pressure effects can be neglected. As discussed
ina {48] the process can be described then, with sufficient accuracy, by -
an expenentiallyrdecaying flow which is characterized by the relaxation
time ccnstant i.e., by the line relaxation time. Therefore, the system s
is stable because the steady state conditions will be eventually restored.*
Consider now the effect of a perturbed flow at the inlet of the heated
dact [3ee Fig;re II-4), It is obvious that an oscillatory flow at the inlet
willi induce an cscillatory flow of the fluid in the duct. However, in
absence of a driving mechanism these oscillations would also exhibit an ex-
cnential decay. We are looking for a meqhanism whereby thege flow oscil-
lacions av surpercritical pressures can be maintained. Like in boiling and
in combustion such ; mechanism is provided by the prcpagation phenomena
which introduce different delay times in the response of the system. This
is shcwn in Figure II-4,
it can be seen cn Figure II-4 that an oscillatory inlet flow can induce
oscillavions of the space lag; this is in accordance with the discussion of
the preceding section. The onset of these oscillations is delayed however

by ~he lag time Ifb, because of the finite rate of propagation of the dis-

TR



will induce oscillations of enthaipy and of density both delayed by ;
certain delay time. With flow and density oscillating, the pressure drep
in the duct will also oscillate. If the conditions are such that the mini-
mum pressure drop in the duct occurs when the inlet flow is maximum, it is
apparent then that the oscillations can be maintained. It is also obvious
that whether or not this will occur will depend on the time lag Z:b and on
the delay times &, , 6% s QL? . When these delay time; do not

depend upon T it can be seen that increasing the lag time Yzb has a

b!
destabilizing effect. Since the time lag .Zb (see Figure II-4) depends

upon the enthalpy difference i it can be concluded that, for this

2 " 1y
particular case, a decrease of inlet enthalpy il, i.e., that an increase
of 6.121 has a destabilizing effect.

From this qualitative description it can be alread§ seen that at
supercritical pressures an unstable flow can be induced by the delayed
response of various perturbations. It remains now to advance a qualitative
description. We shall do this in the following chapters by modifying and
applying the method proposed in 150, 513 for boiling at subcritical

pressures.
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Following [48, 50, 51] it will be assumed that the variation of
pressures can be neglected. This is imgiied by the asgumption that the
density is function of enthalpy only. It can be seen that this assumption
will be valid gnly if the variations of flow, density, enthalpy, etc. are
relatively small dufingrﬁhé total time for propagatién of a pressure wave
tack and forth through the duct., Under this condition it can be assumed
that‘gfervaricus diéé;rg;n;es mcve throuéﬁ a uniform medium. It is ap-
garent alsc tiat this will be true only if the rate of propagatioa cf
Fressure waves i3 considerably faster‘than the rate of ﬁropagation of the
disf:urbar:ces° Hcwever, both in boiling systems as well as in the nearcritical
region the velccity of sound reaches very low values.* Consequently, it can
be expected that there will be a range of operating conditions for which
the assuxprion that the properties do not depend upon pressure variations
will not te satisfied. For béiling systems this limitation hés been already
recognized and discussed by Christensen and Solberg [561 » In general,
it can te expected that the assumption will be satisfied in the low frequency

" oscillaticns. When the effects of pressure vari-

range, i.e., in "chuggin
aticns can be neglected then one can use the formulation put forward in ESOT

and carried out in [51\ for boiling systems at subcritical pressures.



velocity known the energy equation is integrated to obtain the time lag ijb
as well as the rate of propagation of enthalpy disturbances. From the
enthalpy and from the equation of state we then obtain the density of the
medium. The differentiation between the nearcritical region and the
supercritical region is achieved by assigning the appropriate expression
to the equation of state. With the velocity and the density known, the
momentum equation can be integrated. Since the inlet disturbance is small,
the momentum equation is first linearized and then integrated tec give fhe
characteristic equation,

Because of the linearization of the momentum equation the analysis
will be applicable only to cases where the effects of the instability are
not so strong to produce large amplitude oscillations. It can be used there-
fore to predict the conditions of incipient instability, i.e., to determine
stability limits. As discussed in [481 andiSO, 511 linear effects and formu-
lations have been successful in predicting certain type of instabilities
("chugging" instabilities) in combustion and in boiling systems respectively.
A similar result could be expected, therefore,’with the present formulation 1
it is used to predict the onset of '"chugging" instabilities at supercriti;al

pressures.




where L1 and L2 are polynomials with coefficlents independent of the time
and where s is a root of the characteristic equation.

In general, tﬁe root s is a complex number; the real part gives the
amplification coefficient of the particular oscillatory mode, whereas the
imaginary part represents the angular frequency. 8Since the original per-
turbation is assumed to be of the form expL_st'], a given oscillatory mode
will be stable, neutral or unstable depending upon whether the real part
of s is less, equal or greater than zero. A sufficient condition for the
system to be stable is therefore that the characteristic equation (Eq. II-1)
has no roots in the right half of the complex 5 plane.

VLgtrqg examine now what informationrcan be obtained from the character-
istic equaticn as well as the type of practical problems where this information
éan be appiied most usefully. Two such problems were discussed by Crocco and
Cheng[.48] in connection with the stability analysis of combustion systems.
The same discussion can be applied to the present problem.

In the first class of practical problems one is interested in deter-
mining whether a given system with specified characteristics, i.e., with
specified numerical coefficients is stable or unstable. This is most of;en

a situation that arises during the planning period, i.e., before the system



parameters are changed. This is most often a situation that arises during
the design period because of the designer's need either to design a system
with sufficient safety margins or to modify a given unstable system in order
to make it stable. For this kind of problem Crocco and Cheng [48-]
note that it is advantageous to use the characteristic equation for deter-
mining the stability boundary of a certain system. On such a boundary,
expressed in terms of the operating characteristics of the system and of
the process, the oscillatory mode in question is neither stable nor umstable,
i.e., the real part of s vanishes for that mode. The stability boundary
divides therefore the space formed by the parameters of a given system into
different domains in which the system is stable on one side of the boundary
and unstable on the other. If by varying one parameter of the system the
stability boundary is shifted in such a way as to decrease the unstable
dom;in, the variaﬁion of the parameter has a stabilizing effect and vice
versa,

Following the standard procedure the stability boundary is obtained
from the characteristic equation by setting s = i W, where &« 1is the
frequency of the neutral oscillation, Upon separating the real and imaginary
parts of the characteristic equation one can eliminate the frequency w ,

the resulting equation represents the stability boundary. Two such boundaries




It is instructive to note first a gemeral characteristic of oscillatory
systems. A necessary condition for maintaining oscillations is that enough
eneréy is supplied to the system at the proper frequency and pﬁase relation
in order to overcome the losses due to various damping effects which are
always present in real systems. When the rate of energy supplied is control-
led by an external source and is independent of the fluctuations inside the
éystgms, the oscillations will build up when the energy is released at a
characteristic frequency giving rise to the resonance phenomenon. However,
when the system contains itself an energy source, with a property that the
energy release depends upon a fluctuation inside the system, then an accidental
small disturbance in the system may interact with the source resulting in
oscillations of increasing amplitude. For this to take place it is necessary
that the energy from the source be fed to the disturbance during part of
the cycle.

It was discussed in preceding sections that the system which is analyzed
in this paper has the property that the energy release depends upon fluctu-
ations inside the system., Oscillations of the time lag and of thg space lag
are examples of such fluctuations. We shall examine now other energy sources

and fluctuations which may be present in the system,



The same criterion can be used to explain a type of oscillation ob-
served at critical and supercritical pressures as well as in boiling
mixtures at subcritical pressures. In both systems the heat transfer co-
efficient is a strong function of pressure. Thus, pressure oscillaticns
may interact with the heat transfer coefficlent inducing oscillations of
the latter. If these oscillations are in phase, the system may be thermally
driven and become oscillatory.

Another mechanism which may induce oscillations at both subcritical
and at supercritical pressures is caused by the large compressibility of
some parts of the system. At high pressures this is the section of the
system where the properties of the fluid pass through the nearcritical
region. At pressures below the critical point, this will be the section
of the system where subcooled boiling takes place.

Still another mechanism that can induce oscillations ét subcritical
pressures is caused by the change of flow regime which can induce iarge
fluctuation of the mixture density. These in turn may induce both os-
cillations of the flow and of the heat transfer coefficient thus providing
the driving force necessary for maintaining the ascillations.

It can be expected that each of the mechanisms may be effective over







III. The "Heavy' Fluid Region

IT11.1 The Governing Equation

For a "two-region'" approximation the 'heavy' fluid region extends
from the entrance of the heated duct to the transition point. Note,
that for a system with constant energy input, the location of this point
will move along the duct when the inlet velocity and/or the inlet enthalpy
vary.

It will be assumed that the fluid in this region is incompressible
and that the thermodynamic properties are constant. The problem is formu-
lated by considering the three field equations describing the conservation
of mass, momentum and of energy in addition to the constitutive equation
of state describing the properties of the fluid.

For a one dimensional formulaéion, used in this analysis, the con-

tinuity, energy and momentum equations are given respectively by:
¢ AL T -l
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The constitutive equation of state is given by:

f; = Const,

I1I-4

Equatiéns Iii-i, 2, 3 and 4 are four equations wﬁich specify the four
variables ’P-:Q’ T and i in the "heavy'" fluid region. These four
eguations will be integrated to yield ‘P,€'1A and i as function of space

and of time. These will be then used to determine the time lag and the

space lag.

I1.2 The Equation of Continuity and the Divergence of the Velocity

In view of the assumption of an incompressible "heavy" fluid the con-

tinuity equation reduces to the divergence of the velocity

LY

77 = 9 I1I-5

whence upon integration we obtain

A= Ul(t) 11I-6

L
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where the bar indicates steady state conditions.

III-3 The Energy Equation

With the fluid velocity given by Eq. III-7, the energy equation becomes:

U gy a 43

= III-8

b 3 .C{_AL

This is a first order partial differential equation whose solution ‘can be
cbtained by means of ‘characteristics (_60, 611 . The general solution of

Eq. III-8 is of the form:
kﬁ_ = F (\ﬂ\ I11-9

where

"?,(L'-t,'g):_ C, ond ‘-(\(i)’,)ﬁc): C,

III-10

are solutitns of any two independent differential equations which imply

the relationships:




and

di 43

at eﬁ A | 111-13

In order to solve the problem it is necessary to specify the initial
and the boundary conditions. These will be specified by letting a particle

" enter the duét with enthalpy i, at time T, , (See Figure II-3) thus,
1

C=C, at %:o and f’—‘:l ITI-14

With this boundary and initial condition, one obtains after integrating

Eq. III-12 and ITI-13 the following relatioms:

_ st _ oSt
2 =UhH-"T)ee€ [;—e ] III-15
e )

and

L = 943 -7,
y i ff_AL ({ ) I1I-16



The first term on the right-hand side is the steady state term, whereas
the second one is the transient which accounts for the perturbation of the

inlet velocity.

I11.4 The Time Lag and The Space Lag

In Section II-2 the time lag be, was defined as the time required for
increasing the enthalpy of the fluid from the inlet value i1 up to the
enthalpy at the transition point i2 (See Figure I1-3)., Consider now a
fluid which enters the duct at time 721 and attains the enthalpy 12 at

time 7:2; it follows then from Eq. III-16 that the time lag is given by:

Ty = To-T, = (la- L')Efi‘ I1I-18

which, in view of Eq. III-13 can be also expressed as:

T, = A'L“ = Al IT1-19
de 93

It can be seen that for a given system and at a given pressure the time

lag depends only upon the enthalpy difference (i2 - il = AJ";\ ) and the

haat Floww Anned b



For steady state operation & = 0, whence we obtain from Eq, III-20

n——

the steady state space lag A , thus:

_ Bm& LA
= arf III-21

In view of Eq. III-18 and III-21, we can also express Eq. III-20 as:

_ SE - é"StL
AM)= W T, + € 2 ]f II1-22

S

AlE) = A+ 0 A III-23

Several comments are appropriate.

1) Equations ITII-18 and III-21 indicate that for steady state, i.e.,
when 2 = 0 the time lag -C'b corresponds to the transit time.of a fluid
particle through the "heavy" fluid region.

2) Equation III-22 shows that the response of the space 1ég to a

variation of the inlet velocitv is delaved bv a time neriod ennal Fn tha
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The time lag 'Cb was called there the "evaporation time constant" [49] .

I11.5 The Momentum Equation

The momentum equation can be integrated now since the velocity in

and the boundaries of the "heavy" fluid region have been determined. With

the boundary conditions taken as

FP: ’P‘ 0‘.’ %=O

Pem at 3= AWM

kS ITI-24
the integrated momentum equation becomes
T Alt)
Ry
— d?ze [(.D_“_‘_' .r’u.z".i‘_ .,.}.,.i% a2 I11-25
£ ot 3 2D
s 0

where we have taken into account the assumption that the density in the
"heavy''fluid region is constant. In view of Eq. III-5, III-6, III-7, and

III-23, the integrated momentum equation yields:
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III-27

We shall consider now the pressure drop across the inlet orifice.
Defining by ki a numerical coefficient that takes into account the effect
cf the geometry of the restriction and of other losses like vena contracta,

etc., we can express the inlet pressure drop across the inlet orifice by:

B - kg

which, upon linearization can be expressed as:
st
- -—
Po=To- kW _&;6‘_2'\/\‘5—@ I1I-29

We define now the steady state values of the pressure drop due to

| SR
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and due to the inlet orifice by:

- -2
AR = ke ()(—M' II1-32

In view of these three relations and upon substituting Eq. III-29
in Eq. III-27, we can express the pressure drop in the "heavy'" fluid
region by:

?% —-Tz = A. o} + 4 n + Z-Bf -+

{()(' } 48w v_’_z%?(;zm N ’)A?‘L?gu, +§%Aj%‘ o BA?,L} S A

‘ ou 2 III-33

where

st
U, = €€
ITI-34
and
st -$T,
N =€ (1—e )

S ITTI=-135



varying space lag. Equation III-35 indicates that this last effect is
delayed by time lag Ib' We shall proceed now with the analysis of the

"light'" fluid region.



IV The "Light'" Fluid Region

IV.1 The Governing Equation

For a "two region'" approximation the "light" fluid region extends
from the transition point to the exit of the heated duct. The problem
is formulated again in terms of three field conservation equations and
of a constitutive equation of state. However, in contrast to the "heavy"
fluid the density in the "light" fluid region is function of enthalpy
and of pressure. It was discussed in Chapter II that for 'chugging"
oscillations, the effects of pressure variations can be neglected.
Consequently, tﬁe density will be a function of enthalpy only.

The "light" fluid region is described, therefore, in terms of the

continuity equation

Zig__ -+ M !BS__ :221_

-+ = 0 V-1
E Vy 73
of the energy equation
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¢ = ¢
V-4

V = () V-5

when expressed in terms of the specific volume

' Equations IV-1, 2, 3 and 4 are four equations in terms of four
variables—P, Q ,M and i. They are applicable to the "light" fluid
region at supercritical pressures. They can be also applied to the
two phase flow region at subcritical pressures if, aﬁd only if, the
relative velocity between the phases can be neglected.

It is emphasized here that the form of the energy and the form of
the momentum equation, as given by Eq. IV=2 and Eq. IV-3, are correct
only if the relative velocity between the phases is either zero or its
effect is negligibly small. If such is not the case, then both Eq. IV-2,

and Eq. IV-3 must be modified.

It was discussed in Section II-5 that at high pressures, say above

0.85 of the reduced pressures, the effect of the relative velocity is

en emall Fhat i+ Aaan ha manTlantaAd Tha varminn Af dntavact +n +thie analwvede



mixture in the nearcritical region. The differentiation between the

"light" fluid and the two phase mixture will be realized by assigning
the appropriate expression to the constitutive equation of state. This

will be done in the section that follows.

IV.2 The Equation of State

For the "light" fluid the relation between the specific volume and
the enthalpy can be obtained either empirically, i.e., from experimental

data or it can be approximated bty an equation of state such as the per-

fect gas or the van der Waals' equation etc. It was noted in Section II.1

that for oxygen the perfect gas equation predicts with sufficient accuracy

the relation between the specific volume and the enthalpy. Since this

fluid is of primary interest to this investigation, the perfect gas

equation will be used as the constitutive equation of state for the "light"

fluid at supercritical pressures.

Assuming a constant pressure process we have for a perfect gas the

following relations

_ R oar
dv = V-6

.




For a "two-region" approximation the boundary condition for the "light'
fluid region is given by:

v=v et Laq V-9

We obtain then the equation of state for the '"light" fluid region by

integrating Eq. IV-8 subject to the boundary condition given by Eq. IV-8,

thus:

QIli) = 4f+ + — (l‘—ix) . IV-10

We shall derive now the equation of state for the two phase mix-
ture in the nearcritical region. We recall first that the quality x,

of a two phase mixture is defined by:

x = B
G Iv-11
Ge+ Gy

where G_ and Gf are the mass flow rates of the vapor phase and of thé

liquid phase respectively. We recall also that the specific volume



Where V‘f, if

the liquid and of the vapor respectively.

and Ué, ig are the specific volume and the enthalpy of

We obtain then the equation of state for the two phase mixture by

eliminating the quality x, between Eq. IV-12 and Eq.
‘ Vi ¢
WY =+ (=)
A(ffﬁ

Where AV fg = Vg - Uf

zation. Differentiating Eq. IV-14 we obtain for the

(c_*z) _ AV
ai Jp AL‘"&

, and where A ifg is the

which can be compared to Eq. IV- 8 applicable to the

supercritical pressures.

Iv-13, thus:

IV-14

latent heat of vapori-

two phase mixture:

IvV-15

"light" fluid at

It is important to note that both, the equations of state for the

"light'" fluid at supercritical pressures, i.e., Eq. IV-10, and the equation

of state for a two-phase mixture at subcritical pressures, i.e., Eq. IV-14,

are of the same form, i.e., toth can be expressed as:




IV.3 The Equation of Continuity and the Divergence of Velocity

Several methods are available [49, 50, 51, 62] for determining the
velocity in a boiling mixture. Any of these could be modified and used
to determine the velocity in the "light" fluid region. In what follows
we shall use the method of Bouré [511 .

As in the "heavy" fluid region we shall determine the velocity by
- integrating the divergence. However, in contrast to the "heavy" fluid
region where the divergence is given by Eq. III-5, the divergence in the

"light" fluid region is not zero but is obtained from Eq. IV-1, thus:

'D_’M - - L K»_;_M)_e- Iv-17
0y ol 0%

In order to integrate the divergence it is necessary to evaluate
the right-hand side of Eq. IV-17. Following Bourd this can be done by
means of the energy equation.

Since the density is function of enthalpy only one can write

W el
At + T FRILT 1 7 Iv-18
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Yy (91- Iv-20
We shall define now the reaction frequency* _{) by:
s 1
A= e T, T
| ¢ e di > A Tv-2l

It follows then from Eq. IV-8 and Eq. IV-21 that the reaction frequency

for the "light" fluid in the supercritical region is given by:

a X4
-PCf Ag

Iv-22

whereas it follows from Eq. IV-15 and Eq. IV-21 that for toiling at sub-

critical pressures the reaction frequency is given by:

o - 4% 15

Iv-23




The physical significance of this equation is simple: the divergence
of tke velocity in the "light" fluid region is equal'to the volumetric
rate of formation of the "light" fluid per unit volume of space.

In order to integrate Eq. IV-24 it is necessary to specify the
boundary conditions; these are given by considering the velocity in the
“"heavy"” fluid region, i.e., Eq. III-7. The boundary condition‘ for

Eq. IV-24 is therefore:

_ - st
M= M o+dU =MmerEe at 3= AIb)
V=25

wkence upon integration of Eq. IV-24, we obtain for the velocity in the

"iight" fluid region the following expression:
- st ' '
ulihtl = wr £€ + 0 [3~-AB)] IV-26

We ncte that Eﬁ, 1V-26 with QL given by Eq. IV-23 1is the velocity
in the twc phase beiling mixture, as such it was used already in (49,50,5land 62,) -

It is instructive to examine further Eq. IV-26, which, by means of

- v anm
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Iv-28
We can rewrite then Eq. IV-27 as:
U = Uy ly)+ Uy (1) | 1v-29

where the time dependent perturbation of the "light" fluid is given by:

St st -ST,
Suglt) = du-ndA ~ ce __n_gs_C_ (t-¢ ) mw-30

It can be seen from Eq. IV-29 and IV-30 that the flow in the "light"
fluid region is affected by both the inlet perturbation as well as the
perturbation of the spaée lag. This last perturbation is delayed by the
time lag -Zb (see Figure II-4).

We shall define now several steady state relations which shall be

used in following chapters.
A



The lengthwise average velocity in the "light" fluid region is defined

by:
l‘.—

A
Yy 2
Iv-32

whence from Eq. IV-28 we obtain:
IV-33

<l13) = CE “+ fz;gé:iiz

From Eq. IV-31 we have:
n(L-F) = My -4
Substituting this relation in Eq. IV-33 we have the following expressions

for the average velocity:
M} + 4

(W) = '“-I-—'—M =
L A

Iv-34



A fourth relation of interest to this investigation can be obtained
from the conservation of momentum G.and the definition of the log mean
density. If we demote by & 5» the demsity of the fluid at the exit from

the heated duct, then the log mean density in the "light' fluid region is

given by:
€ — E; "Gl
£y

[ v-37
€

The mean velocity, based on the log mean density, is then obtained by

considering the mass flux density, i.e., the momentum G, thus:

Iv-38
y

which, in view of the preceding relations can be expressed also as:

i




and IV-16 in Eq. IV-2 we can express the energy equation as:

0P " PE [ dv-) RV
— { u”:)—— ] — -l ——
0t MR }’D’} { ( i : L)J

A IV=-40

Taking the enthalpy 12 at the transition point for reference and in view
of tte definition of the reaction frequency {1 , given by Eq. IV-21,

ve ¢an revwrite Eq., IV-36 as:

’b(i‘tl) 7 "‘( - Su (i)}’}“""ik) _ Qi | l"(v
Y. +[um el + N (i-ta)

IV-41

Tke initial and boundary conditions for the energy equation are de-
termined by considering the conditions at the transition point (See Figure
II-3); they are given therefore by:

L‘LL == 0 a'f" f =-Cl.
V=42

. -$T
sT $
v A wk 2= ATN T ap */V-€ \

i |



dt 0,-5’ . d(l-—[“—)

—————— —
— -

U, (3) + Tl (t) 9% - '
1 i Q__Ag +_ﬂ,“ LL) IV-4i
whence:
_di' = U-(’b) + XU(‘H) = W+ Jl(g-x)_._ g_esi- S-_Q+.ﬂ.e-sn
AE = | 5 19-45
and
d“-b:) — qs +_n_(i“;~)_)
dt €A IV-46

Integrating first Eq. IV-46 and taking into account the initial con-

ditions given by Eq. IV-42 we obtain:




In order to integrate Eq. IV-45 we note that it is of the form of:

o = fir
o ny f(F)

whose solution is:

P3 - {p(g)ﬂlzg)dj = Const,

e-f-ﬂd; e-._nt'

where 1; —

The integral of Eq. IV-45 is therefore:

- (s-n)t ~ST,
_nt " - -at s-n+ne
SN S e
S-n 5
which, in view of Eq. IV-48, can be expressed as:
-NT, - -ST
U - St s nsne ®
{ A4 — -A—¢e * -

IV-49

IV-50

1v-51

TYY N



Substituting Eq. IV-53 in Eq. IV-51 we obtain after some re-

arrangement:
st "5 b

éﬁt{m.-.—.ﬂ.('é—)_ g oce [1-a(lZ8 )]} =

(£-Ta) ST sit-ty st e
=Ty - =S(t-Ca st |-e =3t” z) : _ ~8Ty
e § Moy NLE g€ ("‘T;“' )._ e €2 [;_ 51{' €

. S=n S

which, in view of Eq. III-23 and Eq. IV-3., can be expressed as

IV-55

T, SslE=Ta)
_m:Lg PRI L AN n gu%\(

By substituting Eq. IV-48 in Eq. IV-55 we obtain the solution of the

energy equation for the specified initial and boundary conditions, thus

il il
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Iv-57

Expanding and retaining only the first power of &€ we obtain after some

rearrangement
5 = -g(FTy) _ste
L-l, = m) — % L,%au,_ Ui e e ;u}
W ei_AL U Q,AL S-n a, ' IV-58

If we let the perturbation go to zero, i.e., & = 0, we obtain from

Eq. IV-58 the enthalpy for steady state operation, thus

) 4% (3-R)

— IV-59
e Ac



IV-60

which, in view of Eq. IV-21, can be expressed also as:

T}‘T?_ = (j—;)@% j’“{ ]‘*‘(;%.)‘,e(-m“} | | IV-61

Denoting by Q =ﬁi{J the rate of energy transfer to the entire
duct and by W , the mass flow rate, we can express the total energy

balance in steady state as:
[Ls- L) lia- )= %_ IV-62

Substituting th:is relation in Eq: IV-61 and fn view of Eq. III-18 we

obtain the following expression for the residence t.me in the heated




state, i.e., by Eq. IV-16, which, in view of the definition of the re-

action frequency.ll,, given by Eq. IV-21, can be expressed also as:

AANNTE
= |+ |5 U=l ag (i-ty) 19-64

Since the enthalpy in the "light" fluid region is given by the
solution of the energy equation, i.e., by Eq. IV-56 we can express the
density as function of time or as function of time and space. Thus by

substituting Eq. IV-64 in Eq. IV-47 we obtain:

: —n(t-T
Quezy g™ rvess
G
whereas by substituting Eq. IV-64 in Eq. IV-56 we obtain:
_ —S(t'rl_) fn e—S(t-tL)J.M
R me ik - i
o, T IV-66

W) - = fuy
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or, in view of Eq. IV-65, it can be transformed in

)
Sin _sTy
- [ R0
Q_Bi) _ “ S’n[ % ] “ ot IV-68
Uﬁ%) - " S @

Using again the binomial ‘expansion and retaining only the first power

of ¢ we can express Eq. IV-67 as:

IV-69

Qiit) U, a w %au:} _e‘sﬁ'm(gu,}

— — —y + — —
% Bl S Wim) ) W) |

Similarly, we can expand Eq. IV-68 and express it as:

utl W {&ua} _[_(7._ "’me'“bg»_q!
Iv-78
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We shall define now several steady state relations which will be

used in the following sections.

By letting 5 = l_ in Eq, IV-71 we obtain the density at the exit

from the heated duct thus:

¢ ™
a\‘}' !‘LH—T) '

Iv-72

O
=
I
w/b
I
n
Se

where we have taken into account Egq. IV-31.

We shall define now the average density in the "light" fluid region

by:
(-7

—

€3) dg

<f€;>

Iv-73

-7

whence from Eq. IV-71 we obtain:



<Q«,7 = _G ’L“;j - & 1v-75

E— We have already defined the log mean density by:

¢- <,
QLM - {l; %
63

1V-76

where QB is given by Eq. IV-72.
A fourth expression can be obtained from the definition of the
average velocity <UQ given by Eq. IV-35 and the momentum G . We

can express therefore a mean density, based on the average velocity,

by:

Q G G 26
— e <u%> M 4 V.ﬂ.(e‘)‘) Vit

Iv-77



where the density perturbation 1s given by

-S(t-T))
Qo = = & § L] 1v-75
: = Wiy Toualyy vy

which, in view of Eq. IV-3U, can be expressed also as:

-Q{t’t,)
) - A o ddh_adl ey
SRR aqm g (3) - IV-80
By letting ﬁ =.{ in Eq. IV-79 we obtain the density pert&rbation
at the exit from the heated duct, thus
~$(Ts-T)
Fe. . M Gg d¥qg 5“\77 IV-81

It can be seen from the preceeding equations that in the "light"

remy

nr



With the density and the velocity in the "light" fluid region
given by the expressions derived in this section and .n Section IV-3
respectively, we are in the position to integrate the momentum equation,

IV.7 The Momentum Equation

In order to integrate the momentum equation it is necessary to

specify the boundary conditions, these are given by:

PPt 3 MO

-y ut 3 = A IV-82

whence the integrated momentum equation becomes:
?3

7 A ol
N B . Q_’“_+QMW+@€+ECM7] 3

Nt Iv-83

A Alt)

The expressions for the density and the velocity which should be

substituted in this equation are given by Eq. IV-78 and Eq. IV-27,



Substituting Eq. IV-78 and Eq. IV-27 in Eq. IV-84 and retaining only

the first power in' & we get:

- _gfl
ew g 9 ¢ Sfs-mnane

1 =

s[5

IV-85

In view of the definition of the average density and of the veloc_.ty
perturbation given by Eq. IV-75 and Eq. IV-3J, respectively, the inertia

term can be expressed as:
- S
AT = (l‘/\\<€a>'0d’_t_} 1V-86

IV.7.2 The Convectivé Acceleration Term

The convective acceleration term in Eq. IV-83 is given by:

e
Kk

[y
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It is of interest to examine the physical significance of the various
terms.

If we let 2 =0 in Eq. IV-88, we obtain the steady state acceleration
pressure drop l_ﬁq , which, in view of the definitions given in Sections

IV-3 and IV-6, can be expressed as:

Ata = G OUW-R) o G (B-B) — () e (U3-0) =

e\ ll)- ] ub f\ Q(_‘ea - = a. IV-89
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IV-94

It shows, therefore, the influence of the variation of the space lag on

the acceleration pressure drop in the "light" fluid region.

In view of Eq. IV-89 and Eq. IV-30, the third term in Eq, IV-88
can be expressed as

Iv-91
§ Uq

It expresses, therefore, the influence of the velocity perturbation in

the "light" fluid region on the acceleratlon pressure drop.

The last two terms in Eq. IV-88 stem from the density perturbation
"term in Eq. IV-70, i.e., from

f -~ l.- T r = \:*I -’Stb-) - . F) L—‘Q ’%] i

|



The third term in Eq. IV-88, i.e., the first term on the right hand side

of Eq. IV-92 can be expressed in terms of Eq. IV-89 thus

- -ST -
S B g, seaene T At
=N Uy s SN U

Iv-93

It shoﬁs, therefore, the effect of the variation of the velocity in the

"light" fluid region on the density and, therefore, on the acceleration

pressure drop in that region.

The physical meaning of the last term on Eq. IV-88, i.e., Eq. IV-92

is not as clear as that of the other terms in Eq. IV-88.

be gained however, by considering the upper and lower limits of the

integral
¢ $ $T '
™ =+l =54 — -
T - e L ({ < \1. )nf ° _{_“;_ } uﬁ[})’Dj?l%j (/3
1 L ¢-p (3] Ugl3) 7y

An insight can

IV-94



which, in view of Eq. IV-89, can be expressed as

—_— —S(ts-t!) — <T
P Ste
Oy B TS WL PR
5-N bT, ¢~ U, IV-96

We note that a simple expression can be obtained by setting H:/M.‘l}): M)/LT&
in Eq. IV-94, this approximation results in the following expression for

the integral I,:

~5(Ty-T)
* _ D an(i-Re L
—4 = - |
SN W
' (T Iv-97
— - —t|
_ o ot SSBTE g,
=N W

The physical meaning of the integral I4 is now clear: it expresses the
effect of the perturbation of the inlet velocity on the density (see
Eq. IV-6%) and, therefore, on the acceleration pressure drop in the

"light" fluid region, This effect is delayed by a delay time equal to
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Iv-98

wicere the steady state acceleration pressure drop AP‘ is giveir by

Eq. IV-89.

IV.7.3 The Gravitational Term

The gravitational term in the momentum equation is given by

IV-99



where 4
L] () ™ e 1a -
y 4t s~ n Ualy) vy
Alt! ! ald
-5Tg < -1v
S8 s Ty
n s-n 5 Us

The physical meaning of the various terms 1is as follows:
We obtaln the steady state graVitational pressure drop by letting
% = X in Eq. IV-100, thus in view of the definitions given by

Eq. IV-36 and IV-75 we have:

= Pt i -\ G
—_ I’A -_—(-—— n 22 = ¢ 1“/\ =
AP, = §(4-R) 5 g (1-) ™
Iv-102

= 4 (L-T){&

The second term in Eq. IV-102 can be expressed by means of Eaq.

maE 8

ey |



It expresses, therefore, the effect of space lag variation on the
gravitational pressure drop.
The third term in Eq. IV-100 can be expressed by means of Eq, IV-39,

IV-75 and IV-103, thus

i,

+ - _
ﬂ(l~W) A ce v s-ntal o QUA-R) & §u
\.4-3 =N S s-n ' u-3q\ 1
APuq L (u} IV-104
N S

where the mean velocity Wm, is defined by Eq. IV-39. This term then
represehts the effect of velocity perturbation in the "light" fluid
region on the density and therefore on the gravitational pressure drop
in this region.

The physical meaning of the last term in Eq. IV-100 can be ex-
plained again by expressing the integral I, in Eq. IV-101 by its, upper

and lower bounds (see Appendix C)



Iv-106

A simple expreasion for the integral I, can be obtained by using the same
approximation which was used in derivihg’Eq.rIV-97. Thus, if we let

lh/ﬁﬂ%)= G\/a; in Eq. IV-10lwe obtain after integration the following

approximaticn e -5(T3-t)
J_: = fv % ‘ ‘Rh us € &-h, o
-n N 0
e - IV-107
o ?w e-S(t.s <) "
= — — \
5-N W,

By comparing Eq. IV-107 with Eq. IV-106 it can be seen that 1,* has a value
which falls between the two bounds given by Eq. IV-106. The last term in
Eq. IV-100 expresses therefore, the effect of the in}et velocity perturbation
on cne density (see Eq. IV-79) and on the grgvitational pressure drop in
the "lgght" fluid region, Furthermore, this effect is delayed by a time
delay equal to TLort,-z,depending on whether we use the upper or lower bound
for the integral Ig4e

By substituting Eq, IV-102, IV-103, IV-104 in Eq. IV-100 and by

expreseing the integral I, in terms of the intermediatae annraximar{inn



7 = -S(Ty-T)
0 bPq g, 0 khg g g b,
: o un Y 1V-108

1 1 [

where the steady state gravitational presure drop is given by Eq.
Iv-102.

IV.7.4 The Frictional Pressure Drop

The frictional term in the momentum equation is given by

L

APy = | £ eu U3 IV-109
2D

k)

Substituting Eq. IV-78 and IV-27 in Eq. IV-109 and retaining only the

firet aArder terme in $ wo nhtain aftor intarvratian +thoe FAllAwdinm ava
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where the integral I5 is given by 7
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The physical ﬁeaping of the various terms is as follows.

We obtain the steady state frictional pressure drop by letting

% = 0 in Eq. IV-110, thus in view of Eq. IV-35 we can write

—

HERY ooli MR
APZ}:'—{;_ e\“l[b‘\ + —‘1 =

k=
IV-112

t-A) ¢ uyY
2D

The second term in Eq. IV-110 can be expressed by means of Eq. IV-112
and Eq. III~-22 thus:

15} R



and Eq. IV-35 thus

- o 5T, 5
? EL-A) er,\:“ s SATne _ 2 afay £
1d > LUy IV-114

This term expresses therefore the effect of velocity perturbation in the
"light" fluid region on the frictional pressure drop.

Similarly the fourth term in Eq. IV-110 can be expressed as

-1 -
jgR cu'/\\ e\—“‘ Ee” «N +n € ° _ i APe,o, JU‘}
S- D S S-n (U IV-115

In view of Eq. IV-79 this term shows the effect of the velocity
perturbation in the "light" fluid region on the density perturbation and
therefore on the frictional pressure drop in this region.

The physical meaning of the last term in Eq. IV-110 can be explained

again by expressing the integral I. in Eq. IV-111 by its upper and lower
5



which in view of Eq. IV-115 and IV-35 can be expressed as:

= = =TT 0, ST
n APy, U, o dh, b4 I < i_ A%} € b‘YMI Iv-117
SR Pleen Y

A simple expression for the integral I5 can be also obtained by using the
same approximation that was used in deriving Eq. IV-97 and Eq. IV-107.

Thus, if we let W Wy )= W [, in Eq. 1V-111 we obtain after integration
9 3

s -31Ty-7T)
[F . 2 Ahse Sy
—$ -8 0,

IV-118

The last term in Eq. IV-110 expresses therefore the effect of the inlet
velocity perturbation on the density (see Eq. IV-79) and therefore on the
frictional pressure drop in the "light" fluid region. Furthermore this

effect is delayed by a delay time equal to Zl or (Is—zl ) depending on

»
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where the steady state frictional pressure drop A?n is given by

Eq. IV-112.

IV.7.5 The Exit Pressure Drop

IvV-119

We can include the effect of the exit pressure drop in the momentum

equation. For this purpose we shall define by }Q_ the coefficient for the

exit losses, then the exit pressure drop can be expressed as

‘ 2
?3—?\! = Af’g\{ — /bQ 63 U-5

Iv-120

By substituting Eq. IV-69 and Eq. IV-27, both evaluated at 73 = L, and



We obtain the steady state exit pressure drop by letting & =y

in Eq. IV-121 thus
—_— -2 ——
APy = ke Qg W = ke G Iy IV-122

Consequently Eq. IV-121 can be expressed as

—

- AP\
3 Iv-123
S o ~5(T4-T,
i A?z,q 5"“3 _ l Ai;v ES( 3 )‘f ‘
s-n W, s-n W

The second term in Eq. IV-123 represents the effect of velocity
perturbation in the "light" fluid region on the exit pressure drop.
The last two terms in Eq. IV-122 can be expressed as

1

- =~ £ € -S(Ts-t') Cr. ]
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where we have taken into account Eq. IV-8l. Consequently the last two
terms express the effect of the density perturbation on the exit pressure
drop.

IVv.7.6 The Integrated Momentum Equation

By adding Eq. IV-86, IV-98, IV-108, IV-119 and IV-123 we obtain the

integrated momentum equation for the light fluid region thus

?Z-?L( = AVa + ﬁbb —+ ‘;?;3 _*'A_fiy‘*'

- umxm diy

dt
_ % ;(30 A?u_q U, . Apzi _@ Bg/\ n
=AY (1-A) W, (A-R) ) v-125




By adding the momentum equations for the "heavy" and "light" fluids
we shall obtain the momentum equation for the system whence the characteristic
equation for predicting the onset of unstable flow., This will be done

in the chapter that follows.

IV.8 Comparison With Previous Results

Before we proceed with the derivations of the characteristic
equation, it is of interest toréompare the results défived in this chapter
with those reported previously in [49, 50, 51, 53, 55). In this section
we shall make comparison with the results of (49, 50 and 51) whereas in
the section that follows we shall compare the presenﬁ results to those
of {53, 535].

It was already discussed in Section I.3 that the assumptions made
in the present analysis as well as the general formulation of the problem
are the same as those reported previously the Wallis and Heasley [50] and
Bouré (513 for boiling, two phase system., It was also noted in Section
I.3 that the present analysis differs from those reported in 49, 50 and
513 in the following respect: 1) the constitutive equation of state is

different and 2) the characteristic equation is different.

ML . ecaVawean - Fran EA 3 BN Lae. A_f.._21 r v e
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to be taken into account then the momentum and the energy equation, i.e.,
Eq. IV-2 and IV-3 must be modified. Furthermore, a diffusion equation
should be added to the field équations describing the proceés. An in-
vestigation along these lines wili be reported separately.

If, in the boiling region, we express the reaction frequency L by
means of Eq. IV-23, then the density given by Eq. IV-65 becomes identical
to that derived first in (49) and to those in {50, 51, 55) usingrdgfferent

approaches. We shall examine now Eq,AIV—66 which can be expressed also

as:
N —S(l“'f») -ST
O TR S (¢ R R
€ A Gal3)

Iv-126

whence, in view of Eq. IV-65, and IV-30, the perturbation can be written
A}

57, ~(s-R)E"T) 5T,
Fery g6 Lt n - e = <
VAT T s $-

Iv-127
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to Fq., 38 in the paper by Wallis and Healsey (50) derived using a different

apprecach,
We can insert Eq. IV-65 in Eq. IV-126 and express the latter as

- ‘ %
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if the demsity terms which appear or the right hand side of Eq. IV-129

are sppreximazed by the steady state relation, i.e., by

Q13,4) n
e = T 1V-130
- qu '

as was done in (51) we obtain
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which 1s equivalent to Eq. 5. Appendix A cf Boure's report (51).
Apart from the difference in the equations of state used in this

arzlysis, the difference between the present resules and those of (50, 51)
is in the handling the momentum equation. In (50) the momentum equation

Im
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In the present analysis we have introduced various definitions for
the mean, for the average and for the log mean density as well as for the vel-
ccities in the "light" fluid region which enabled us to give physical
interpretation to the various terms in the integrateé momentum equation.
It will be seen in what follows-that these relations, togethet with the
approximation used in deriving Eq. IV-97, IV-107 and IV-llS)fesult'in a
characteristic equation given by an exponential polynomial of fhe third
order. It will belseen also in whatrfollows that these results will
enable us to derive stability criteria and stability maps which,

previously, were not available in the literature.

IV.9 The Density Propagation Equation

It is of interest to note an alternate way for determining the density
perturbation.

If we substitute Eq. IV-21 in Eq. IV-19 we obtain:

IV-132

zi_+ i_—_....e_n,
W 7%

Thie onnatian ruse ralliad the ansrov emiatinn in (81) where it wae firar



This void propagation equation takes into account the effect of the
relative velocity between the two phase as well as the effect of the
non-uniform velocity and concentration profiles in the two phase mixture.
It can be easily shown that if these effects are neglected the void
propagation equation can be reduced to Eq. IV-132,

We note also that Eq. IV-132 is of the same form as the continuity
for a given species in a multicomponent, chemical reaction system. In
chemical kinetics the source term in Eq. IV-132 is referred to as the
reaction frequency., It is for this reason that in (53, 55} the term
was called the "characteristic frequency."

Finally, we note that Eq. IV-132 is a first order partial differential
equation which can be solved by the standard method used in Sections III-3
and IV-4. TIndeed following this procedure, used already in [53 and 55),

one can derive Eq. IV-66 and Eq. IV-68.



V. The Characteristic Equation

V.l. The Momentum Equation for the System

The momentum for the "heavy'" fluid is given by Eq. III-33, whereas
that for the "light" fluid is given by Eq. IV-125. By adding these two
equations, we obtain the momentum equation for the system.

We note that if the downstream pressure P4, is constant we can ex-
press_the overall pressure drop, i.e., the external pressure drop of the
system as a steady state term and a pressure perturbation caused by the

inlet flow. Thus

—

P, . Ao, + Eff& § U,

fou‘ V'l
where the second term on the right hand side is determimed by the pump
characterist.cs and has a negative wvalue,

By adding Eq. III-33, Eq. IV-125 and Eq. V-1 we obtain the integrated

momentum equation for the heated duct, thus

——
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We obtain the steady state pressure drop for the system by letting
the perturbations go to zera, thus

e 4
———

A-ﬁ; = 06 +afl A()q—;- ne +Afsg 4 AQ’L3+ 2%y

By subtracting Eq. V-3 from Eq. V-2 we obtain the perturbed form of

the momentum equation, thus
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The formulation is now essentially complete because Eq. V-4 is the
expression which gives the response of the system to the initial flow
pertubation as function of the influence coefficients defined below.

The influence coefficientst1 and F, represent the mass of the "heavy"

fluid and of the "light" fluid respectively, thus



The coefficient F3 describes the effect of the inlet flow variation

on the pressure drops in the "heavy" fluid region, thus

X _ ()Afop + qd‘,n - QA(J,, - ZA«n +- 20-PIL x ,)A({d,) V-7
P D, Aw, I w Dy,

This coefficient, which is well known from studies of the transient
response of single phase flow systems, has always a positive value.
The coefficient F, shows the effect of the velocity perturbation in

the "light" fluid region on the pressure drops in that region, thus

F4 - A@c\ + 2&?}.3 n lA__?%\I V-8
N 4“@) Us

It is of considerable importance to note that each pressure drop is
differentiated and is weighed therefore by a different velocity. This
important result is a consequence of the integration of the momentum

equation, i.e., of the distributed parameter analysis. We note that in

the "lumped" parameter analysis the three pressure drops in Eq. V-8 would

have hean divided hv rhe zame velnritv sav hv the velacirv UL aF the
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It can be éeéﬁ from Eq. IV-69 and Eq. V-2 thaﬁ these two coefficieﬁtslacccunt
for the effect of the dersity perturbaticn on the various pressure drops in
the "light" fluid region. Note, that the density perturbation depends on bot
a%h) and Cﬂ . Two observations are noteworthy. First, the coefficient Fg
shows that the effects of the velocity perturbation on the "light" fluid

region are weighed by various velocities. This, again, i1s a consequence of

" the distributed parameter approach, Two, the exponential which multiplies

the ccefficient F6 indicates that the effects of the inlet perturbation are
delayed by the delay time Ty-T, .
Finally the coefficient F7, defined by
] :'DAP“ AP“

F o= AL
K a2 (I—K) J?[(’K} V-11




the system. This result could not have been anticipated in a "lumped"
parameter analysis. Indeed, in several studies of boiling systems using the
"lumped" parameter approach these terms were introduced and retained in
the analysis. 1In view of the foregoing)the results and conclusions based
on such formulations can be considered as spurious.

By introducing EQT,V-S through V-11 ianq. V-4 the perturbed momentum _

equation for the heated duct can be expressed by

-d—(m—'+F dily + R dy, + Fa duy o

odt e
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Before deriving the characteristic equation it will be instructive
to express the perturbations in Eq. V-12 in terms of the perturbations of
the inlet flow and of the space lag. Taking into account Eq. IV-30 we can

express Eq. V-12 as
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variation of the space lag. This latter effect is an example of a
fluctuation which occurs inside the system. It was discussed in Sections
II-4 and II-7 that such fluctuation have a destabilizing effect. The
destabilizing effect which the space lag variation has in combustion
systems and in boiling systems has been already demonstrated in {48, 52)
and {50, 51} among others. Equation V-4 shows that, at supercritical
pressures, the space lag variation has a similarly destabilizing effect.
Furthermore, the negative sign in the third term on the left hand side of
Eq. V-13 shows the destabilizing effect of the inlet velocity perturbation.
We have noted already that this effect stems from the density perturbation
in the "light" fluid region.

V.2 The Characteristic Equation

In view of the definitions of the inlet velocity perturbation and of
the space lag perturbation given by Eq. III-7 and Eq. IV-30 respectively,

we can express Eq. V-13 as
..s/'cyt.)
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obtain the characteristic equation for the heated duct:

. — _S/T_;—r.)
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- It can be seen that the characteristic equation is a third order pélynomial
with two time delays. From the definitions of the influence coefficients

we have the following relations for the various terms which appear in

Eq. V-15.
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It was discussed in Section II-6 that the characteristic equation
predicts the value of -§ as function of the pressure terms given by Eq.
'V-16 through V-22. In general s is a complex number § = affdﬁ), the real
part gives the amplification coefficient of the particular oscillation

mode, whereas the imaginary part represents the angular frequency @

Since the original perturbation of the inlet velocity was assumed to be

of the form 6th==£e?f. a given oscillating mode will be stable, metastable
or unstable depending on whether the real part of S is less, equal or larger
than zero, i.e., whether CL(O, as0 or @y 0.

A general study of the flow behaviour entails an investigation of
conditions leading to aperiodic as well as to periodic phenomena. The
first pertains to the possibility of flow excursion whereas the second
pertains to the onset of flow oscillations. Following the standard pro-
cedure we shall study aperiodic phenomena by considering the case of
S = awith@ = 0. Again, following the standard procedure we shali study
periodic phenomena by setting 5=£CJ'(a = OIOJ#%D ) in the charac;eriétic
equation. Such an approach will enable us to determine the stability

boundary which defines regions of stable and of oscillating behaviour in
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VI. Excursive Instability

VI.1 Derivation of the Stability Criterion

The study of excursive, i.e., of aperiodic instabilities is con-
ducted by considering the exponent $ of the velocity perturbation to be
real, i.e., by letting the angular frequency & of the disturbance be zer
It follows then from Eq. V-15 that for small values of § , we have the

following relation:

SE « sAR(-nTy) 4 F & Fy (IF0T)

Vi-1
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—(1+£) Fe (1 —at) +(1+ 2)F (1-$Tu)- /0T =,
whence after rearrangement:
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Equation VI-2 predicts the value of the exponent S in terms of the
influence coefficients. Since the inlet veiocify perturbation is of the
st
form of 5” =Ee , and since the coefficient A* is positive and exponent
S is real, Equation VI-3 indicates that the flow will be stable, i.e.,

the disturbance will decrease with time if B* is positive, thus from

Equation VI-2

S - — - -
B = FS +F“‘T(‘_'th)—‘_$-{{‘—nl’$)+'_‘(’ -KF AL >0
VI-4

If B is negative then Equation VI-3 indicates that s will be real

and posxtlve, consequently any flow dxsturbance will be ampllfled

with time resultlng in flow excursions. Substltutlng the definitions
for the 1nfluence coefficients given by Equation V-5 through Equation
V-11 we can express Equation VI-4 in terms of steady state pressure

drops, thus
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Substituting Eq. VI-6 through V1-12 in Eq. V1-5 we obtain the stability

criterion:
d Jale,
™ g/.\ﬁ.—i-“cﬁ-b? 4-4? +A? + A? +AP;\.} T >/O Vi-13

which can be expressed also in terms of the total mass flow rate W, thus

d;éW__AP + dde"”l /O , Vi-14

For boiling systems, this simple criterion was first derived by
Ledinegg (24) using a different approach, it was analyzed further in
{25 through 47] and {51]. The results of this analysis show that this
"Ledinegg instability" can occur also at supercritical pressufes. Tﬂe
significance of the stability criterion given by Eq. V1-14, can be best
analyzed by considering the steady state A?—kr‘relation for the heated
duct. This will be done in the section that follo@s.

V1.2 Significance of the Stability Criterion

If, for simplicity, we neglect the effect of the gravitational force
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The total pressure drop for the heated duct is obtained by adding

Eq. V1-15 through V1-19, thus
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1t should be noted that Eq. V1-20 is applicable to subcritical as
well as to supercriﬁicalupreséures. By assigning the proper expression
to (;}U”/df ), which we obtain from the equation of state, we can
differgntiatg ﬁhe p;océﬁs gfézoiling at subcriticgl pressures from the
process of he;t transfer at supercriticél pressures., Thus, for boiling

hat subcritical pressures we have from Eq. IV-15
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whereas at supercritical pressures we obtain from Eq. IV-8
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It can be seen from Eq. V1-20 that whether in boiling at subecritical

pressures or in heating at supércr?}icalfpressgrgg the steady state
pressure drop in the heated duct h;; t;e ggggiéuéic”dependence upon the
total mass flow rate. This important conclusion from analysis is indeed
supported by the experimental data reported by Krasiakova and Glusker (18)
for water in forced flow through a circular heated duct. Figure V1-1,
which is reproduced from (18),shows thag in boiling aF subcritical
pressures (P = 140 bars) as well as in Beating7at supercritical pressures
(P = 226 bars) the pressure drop in the heated duct has the same cubic
dependence upon the mass- flow rate, It could be anticipated therefore that
the system will have similar dynamic characteristics at these two pressure
levels, This is indeed the case as it will be shown later.

The significance of the stability criterion given by Eq. V1-}4 can be
best analyzed by plotting Eq. V1-20 together with the pump characteristic
on the same graph. Figure V1-2 shows such a plot together with three
possible flow delivery characteristics, i.e., 1) constant pressure drop
delivery system, 2) constant flow rate delivery system and 3) delivery

system specified by the pump characteristics, The intersection of the
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v1.2.1 Constant Pressure Drop Supply System
The operating point for a conmstant pressure drop delivery system are

indicated by points 1, 2 and 3 in Figure V1-2, The stability criterion

given by Eq. V1-14 indicates that operation at points 1 and 3 will be

stable whereas that at point 2 will be unstable. For example, if a points

R

1 and 3 tée flow isrgiightly increased the pressure droprof the heated
duct’ increases, i.e., the "demand" curve of the system increases above the
"supply" curve of the delivery, consequently the flowrwill return to its
original value. Similarly, if at points 1 and 3 the flow is decreased

the pressure drop of the deiivery will be above that required by the

" heated duct resulting in an ihcréésed flow and return to the original ' E
operating point. However, the operation at point 2 will be unstable with

reépect to either a flow increase or a flow decrease. If the flow is

slighfly increased at point 2 the external system supplies more pressure

drop than that required to maintain the flow., Consequently the flow rate

will increase until the new operating point is reached. Similarly, if the

flow 1s decreased at point 2 more pressure drop is required to maintain

the flow than is being supplied by the delivery system. Consequently
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which in view of Eq. V1-20 becomes

d €47 « W « -? v1-27
——— = 34 - N ¢ R
dw “ o > 0

It can be seen from Eq. V1-26 that flow stability requires an in-
creasing pressure drop with flow rate. This is indeed the characteristic
of most flow systems. However, the negative term in Eq. V1-27 indicates
that for boiling systems as well aé for systems at supércritical pfessures
the pressure drop may decrease witﬂ flow rate resulting in flow excursion.
Instead of the stability criterion given by Eq. V1-26 one can introduce

the coefficient of stability S, apparently first proposed by Schnackenberg [2:

and defined by

S = W (-diﬁ)‘ , Vv1-28

AW Jaq

which in view of Eq. V1-20 and V1-27 can be expressedras
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variation ia the mass flow rate. It can be seen from Eq. VI-28 and VI-26 that

for stable flow § must be positive, thus
! .
/S > O Vi-30

V1.2.2 Constant Flow Delivery Systemr

Tre operatirg point for a constant flow delivery system is given by the
Intersection cf the pressure supply with pressure demand curves. It can be

seen from Figere VI-2 chat for such a system

&!A—Pe, .

T Do

whence Eq., VI-14 indicares that for such a system no flow excursions are possible,

v1.2,3 Delivery Specified by Pump Characteristics

The operating poiuts for a system whose flow delivery is specified by
the characteristics of the pump are shown as points 4, 5 and 6 on Figure VI-2,
Usinug exactly the same arguments as those used in discussing a constant pressure
drop delivery system, it can be shown that the operating points 4 and 6 are

stable whereas operating point 5 is unstable with respect to small flow

TRty



VIi.3 The Effects of Various Parameters and the Methods for Improving Flow Stab:

The effects which various parameters have on the propensity for flow
excursions can be evaluated by examing Eq. V1-14, V1-21, V1-22, V1-23 and
Ey. V1-27. It can be geen that thervariation ofrany"paraﬁeter thch ténds
to increase the value of the coefficient b given by Eq. V1-22 will have a
destabilizing effect. Consequently, increasing the value of the exit pressure
drop coefficient ke is destabilizing whereas the flow can be staBilized
by a high inlet pressure‘drop, i.e., by appropriate orificing.- In view
of Eq. V1-24 and V1-25 it can be aiso seen that increasing the system
pressure will have stabglizing effect whereas a decrease in system pressure
has the opposite effect. Furthermofe, the flow can be also stabilized by
changing the pump characteristics.

Before closing the discussion of excursive instabilities it will be
instructive to illustrate the destabilizing effect of the compressibility
of the fluid in tﬁe heated duct. It was discussed in Section 1.3 that the
instability mechanism which is analyzed in this paper is based on the
effects of time lag and of density variations in the heated duct.

For simplicity we shall consider only the effect of the frictional
pressure drop in a system with zero inlet subcooling, i.e., with AIAJ:

(o] .

For such a system Eq. III-20 shows that the space lag is also zero. The



If we insert in Eq. V1-32 the expression for the average velocity <h=‘> given
by Eq. IV-35 and since the space lag is zero, we can express the mean

specific volume U as

Vs = Vg -+ -.\;_ % V1-34
or in view of Eq. IV-21 as
Vm = fU(_ + Ll (%{T)P% | V1-35
whence
o _ 1 (4 a
dw 2 i )p —L:f-" V1-36

Since Eq. V1-32 and Eq. V1-35 show that both AP and Vp. are
functions of W we can express the stability coefficient defined by

Eq. V1-28 as

S =2+ —E(ﬂ:\'

FEW



where (dU/di) is given by Eq. IV-15 eor Eq. IV-8 depending on whether
we are interested in the subcritical or in the supercritical region.

It can be seen from Eq. V1-37 and Eq. V1-30 that for a system where
the mean specific volume does not depend on the mass flow rate the flow
will be stable. TFor such incompressible flow system the coefficient of
stability S has a value equal to 2. This is also the maximum value of §
because when the fricition factor f in Eq. V1-32 is a function of the
Reynolds number then Eq. V1-28 shows that S will have a value less than
two. For example, for laminar flow it will have a value equal to unity.

For a boiling system at subcritical pressures or for a process df
heating at supercritical pressures Eq. V1-38 shows that the value of S
can become negative because of the compressibility of the fluid. For
such systems Eq..V1-30 shows that the flow may become unstable.

In closing it should be emphasized that the density effect per se,
can lead to excursive flow instabilities, Oscillatory flow instabilities
results from a combined effect of time lag and of density variatiom. This

will be analyzed in the two chapters that follow.
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VII. Oscillatory Instability at Low Subcooling

VII.1 The Characteristic Equation and the Stability Map

' ‘ In this chapter, and in the following one we shall investigate periodic,
i.e., oscillatory flow phenomena. For this purpose we shall assume that the
exponent S of the inlet velocity perturbation is given by S ={Wyhere the
angular frequency ¢J , 1s a root of the characteristic equation, i.e., of Eq. |
In this chapter we shall consider the case of low subcooling, whereas, in the ¢
that follows we shall consider the case of high subcooling.

For the case of low subcooling the characteristic equation, i.,e., Eq, V-

can be simplified by recalling that for low subcooling the time lag Te, given
Eq. III-19 will be short. Note, that the total tramsit time Ty-T:i , which a!

appears in Eq. V-15 need not be short. This can be seen by considering Eq. IV-

i,e.,
sua €k (da’ Ao ) diy €0 : |
T -T, = ——— Lo == ) ¢ _W-A‘x\ -
] re o o M{H(“”? (-3 )} A

which can be also expressed as:
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Consequently, for short a space lag 7{, and a short time lag Tp , the transit
time may be long for sufficiently long ducts and/or for low inlet velocities.

It can be seen from Eq. VII-3 that the effect of time lag will be small if

ATl | VII-4

which for subcritical pressures implies

" } VII-5
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whereas, at supercritical pressure this inequality implies:

R Dia, VII-6

nT, = <\
? Cp q@

When the time lag \ is short, then in Eq. V-15 the exponential term
which contains T4, can be expanded and the characteristic equation reduces

to
S{RTR-F T « _S§ Fyw Fy= N (FrF) =R To( Fy+F-n F’,_)} —



- using this new variable, Eq., VII-7 can be expressed as

! ~7
Y +o0%+b+ce =o : VII-9

where the dimensionless coefficients a, b and ¢ are given by:

- o VII-10
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and where the total transit time AT is given by Eq. VII-7, The coefficient

a, b and c can be expressed also in terms of the pressure drops, thus
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Equation VII-9 is a second order exponential polynomial with one timé
delay. Stability maps for such polynomials have been recently presented by
Bhatt and Hsu [65, 64]. One such map is shown in Figure VII-1, it is in
the c-b plane with ghe coefficient "a" as a parameter. The lines for which :
the coefficient "a" is constant are stability boundary curves. For example,
for given values of the coefficients ﬁb? and "a", the stable region of variation
for the coefficient "c" is shown by the line segment'AB; The segment CD is another
stable range for constant values of "b" and of "a",

Figure VII-1 is the stability map which can be used to differentiate
the regions of stable operation from the region of unstable, i,e., of oscillatory
flow in the heated duct. However, because of the complicated nature of the

coefficients "

a'", "b", and "c" which appear on this map, it is rather difficult
to discuss and analyze the effects of the various parameters. It is desirable,
therefore, to simplify the characteristic equation in order to obtain simple

stability criteria. This will be done in the section that follows by neglecting

the inertia terms in Eq. VII-7,.

VII.2 _Stability Criterion for the Case of Small Inertia

VII.2 The Characteristic Equation

If we neglect the inertia terms F1 and F2 in Eq. VII-7, the

characteristic equatibn reduces to its simplest form given by



and F:F

FitFy- AT. (Fy+F) ViI-18

It is important to note that a characteristic equation of the form of
a first order exponential polynomial with one time delay describes the omnset
of "chugging" combustion instabilities as shown by Crocco and Cheng [98].
Since Eq. VII-16 is of such a form, we can use the resulfs of Crocco and ChengVLASJ
to analyze the flow stability in this problem. The difference between the present
problem and that of combustion is the physical meaning of the coefficients A and B.
In this problem they depend on various pressure drops in the system which were
obtained from the momentum equation, In the combustion problem the coefficients
are obtained from the continuity equation and depend, among others, on the process
of combustion,

We note also that the results of Stenning [62] can be expressed in terms
of a characteristic equation of the form of a first order exponenﬁial polynomial
with one time delay. However, since Stenning [62] did not formulate his analysis
of boiling instabilities in terms of the momentum equation,* the coefficients in

his characteristic equations do not depend upon the pressure drops.,

VII.2.2 Unconditional Flow Stability
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Because of its importance, we shall define this ratio as the Stability Number

In view of Eq, VII-17 and VII-18, it can be expressed as

NS — Fy4Fy-Fe = N (FytFy- F5) > ‘ VII-20
Fe

This stability criterion can be put also in the form of

R +Ef—F_;-—ﬁzs(Fu“f":7"Fs)—F—u 7o VII-21

whence upon inserting the values for the influence coefficients in Eq, VII-27

we obtain the inequality which must be satisfied for unconditional flow stabi:

thus
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1f we now approximate <U1>'by T:; we can express Eq. VII-23 as

B 24P, |6k St n-D Py 147,
2k, 24T +l “| _ LRatdly -l AL (aPyga) >
U U rb“! m RN lAB
VIi-24
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Defining by A F‘ the sum of the preésure drops in the "heavy" fluid region.

m = APO| -+ APIL - A?e,\(
VII-25

P

and by Z;?é the sum of the frictional and of the exit pressure drops in the

"light!" fluid region

Eﬂ = A?a; “+ APs\, ' VII-26

we can express Eq, VII-24 as

e VII-27
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This inequality can be expressed also in terms of the total mass flow rate and

of the total heat flow b . Thus
_?- di | W doy € Waiy Wat
200 (4) 1 (% (0 (). Wa [

Again, we differentiate the process of Boiling at subcritical pressure from the

process of heating at supercritical pressures by using the appropriate equation

of state, thus at subcritical pressure we use Eq. IV-15, i.e.,

(d_‘f) _ AV

di bigy VII-31

whereas at supercritical pressures we use Eq, IV-8, i,e.,

VII-32

d R
“_:F)Pz Py

The implication of Eq. VII-30 will be discussed in Section VII.3.

ViI.2.3 Conditional Stability

Following again Crocco and Cheng [48_\we can determine the relation

between the critical transit time &7 and the critical frequencies ', correspo



and . A

where the coefficient B) given by Eq. VII-IS) can be expressed in terms of the

pressure drops thus
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The stability number Ns’ given by Eq. VII-20, becomes when expressed in

terms of the pressure drops:

LTI T

i



The critical frequency W, , is obtained from Equation VII-34 and Equati

VII-35, thus

W = \’B"—-A-" VII-40

whereas, the critical transit time AT 1is given by Eq. VII-35 and Eq. VII-4(

thus

(Z’;-t.)(_ = 8Te = —— | 2 r— us‘)(%)]] VII-41

\} B*-AY

As discussed by Crocco and Cheng {48\ if the inequality given by
Eq. VII-19 is not satisfied, then stability is still possible if the angular
frequency of the perturbation and the transit time satisfy the following

inequalities
o> we VII-42

and

AT < 4L VII-43



The preceding results can be plotted against the stability number N ,
s
given by Eq. VII-20, i.e., by Eq. VII-34. For this purpose we shall define

also the period of the oscillation by

VII-45

We can form now the ratio of the critical transit time to the period
and express it as function of the stability number NS, thus from Eq, VII-45

and Eq. VII-41 we obtaih

Z C\) ‘zl I ‘,
AL, — < (G Je —_ _\_ - — Lo /V_s VII-46
- T L 2 :

The critical angular frequency can be also expressed as functions of

ﬂs, thus from Eq. VII-40,

Coe

]

= {I=-N" VII-47

Similarly, by means of Eq. VII-41 we can express the critical transit

:ime as function of Ns’ thus

TR
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VIi.3 Effects of Various Parameters and Methods for;Improving Flow Stability

The effects which Qarfous parameters have on éhe pfdpensity to induce flow
oscillation at low subcooling can be evaluated by examining Eq. VII-22 or
Eq. VII-30, It can be seen that the variation of any parameter that tends to
decrease the positive value of the left hand side of these equations has a
destabilizing effect, For %xample, increasing the various pressure drop terms
in the "light'" fluid region has a destabilizing effect. Similarly, an increase
of subcooling tends to destabilize the flow. Vice versa, an increase of the
inlet pressuré drop or a change of the pump characteristics will stabilize the
flow.

Although the preceding results have not yet been tested against experimental
data, the form of the simplified stability criterion given by Eq. VII-29, seems
to be correct. This statement is based on a comparison of Eq. VII-29 with the
empirical criterion for predicting boiling instabilities recently proposed by
Serov and Smirnov (66)., In the nomenclature of this paper, their criterion is

given by -~
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If we neglect the effects of compressibility im Eq, VII-49 and compare i
to Eq. VII-29 and VII-31, it can be seen'that Eq. VII-49 is incorporated in
Eq. VII-29, Wé note also that this latter equation is a simplified form
of Eq. VII-23; i.e. of Eq. VII-9 which are therefore more general and
complete,

Further experimental evidence that gives support to the form of
Eq. IV-29 is shown on Figure VII-3 which is reproduced from the paper
by Platt and Wood 1EQ7. It can be seen from this figure that either
increasing the power input and/or decregsing the mass flow rate has a
destabilizing effect. The same results are predicted by Eq. IV-29.

Perhaps the result of greatest significance revealed in the present
investigation is the similarity between the characteristic equations for
predicting "chuéging" combustion 6scillations and the characteristic
eqﬁation for predicting low frequency flow oscillations in heated ducts
at near critical and at super-critical pressures, Since it.is well
known (see for’example[&é) ) that "chugging" combustion instabilities can
be stabilized by an appropriate servo-control mechanism, the results of
this investigation indicate that low frequency flow oscillation at near
critical and at supercritical pressures may be also stabilized. This

important conclusion is demonstrated on Figure VII-2 which shows also the
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The effects which the variations of the various parameters have on
the flow stability can be evaluated from Figure VII-2 by considering
whether the variation results in an increase of the stable region, For
example, it can be éeen from Figure VII-2 that for a constant value of Ng
an increase of the delay time has a destabilizing effect because for
sufficiently long delays A will become larger than A2T_. We note that
this quantitative conclusion is in agreement with the qualitative des-
cripticn of the destabilizing effect of the time delay presented in Section
II1-4, 1t can be alsc seen from Figure VII-2 that increasing the frequency
of the inlet perturbation at a constant value of Ng, has a stabilizing
effect because for sufficiently high frequency ¢) will become larger
than eJ, . Furthermore, Figure VII-2 shows that an unstable flow; i.e.,

a flow for which wiw_ and 6T &8Tg can be stabilized by increasing the
value of the stability number Ng. - |

We close this section By observing that the foregoing conclusions
and results are new and have not yet been verified against experimental
data. If confirmed, then the results of this study provides a method
whereby stable operation can be insured on an intrinsically unstable

region,



Ll




.-

VIII, Oscillatory Instability at High Subcooling

VIII.1 The Characteristic Equation and the Stability Criterion

We shall consider now the case of high inlet subcooling which implies a

——

iong time lag T;and a long space lag Ao For such system Eq, VII-3 indicates

that the transit time and the time lag will be of the same order of magnitude.

Since both time delays are long, we shall neglect the exponential terms in the

characteristic equation given by Eq. V-15, which reduces then to

51% F\'?FLll + $ %‘:3“‘ F\,'- IL(F\-\-F,_)" - ﬂ(s B+ Fy- F','& -

_% % S\—FL + S[F\,ﬁ.\»‘.)-n,&] - ﬂ[F\I’f'F?—F—J-] } =0

which can be rearranged and expressed as
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VIIIi-4

VIII-5

VIII-6

It can be seen that the characteristic equation is a cubic equation of the

form of
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whence upon separating the real and the imaginary parts we have

=
Wwra- & VIII
o III-9
and
e _.._d '
= " VIII-10
b

Consequently for oscillations to be possible the coefficients a,b,c and
d in Eq. VII-9 and Eq. VII-10 must satisfy the following relation:

= | VIII-11

_ L
a L

'

whence, the values of the influence coefficients must be such as to satisfy th

following expression:

F}*R’Fr‘(ﬁr*rr‘ﬂﬁ) Fy +F5— Fr
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Therefore, the flow will be stable if

F -
rhy ;}_N%Ta"n&)>o VIII-14

In view of Eq, VIII-5, this inequality can be expressed also as:
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For cscillatory flow, Eq. VIII-13 and Eq. VIII-9 indicate that the angular

freqﬁency will be given by

W = ]- < l - if VIII-16

[~ 9

which, when expressed in terms of the influence coefficients, becomes
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V111.2 Effects of Various Parameters and Methods for Improving Flow Stability

The effects of the varlous parameters can be evaluated by examining the
inequality given by Eq. VIII-15. It can be seen that any variation which tends
to increase the value of the left hand side of this equation will have a stabil:
effect, Thus, the flow can be stabilized by increasing the pressure drops in
the "heavy" fluid region, whereas it will be destabilized by increasing the
fressure drops in the "light' fluid region.

The effect of subcooling can be evaluated by compafing Eq. VIII-14 and

Eq. VIII-15 with Eq. VII-20 arnd Eq. VII-39. Since the velocities in the "light'

fiuid regien are higher than the inlet velocity it can be seen from such a

comparison that the inequality applicable at high subcoolings, i.e. Eq. VIII-14
is less restrictive than that corresponding to lo% subcoolings, i.e., than

Eq. VII-20. Consequently, the flow is more stable at high subcoolings.

However, since Eq., VII-20 indicates also that an increése in subcooling destabil

the flow, we conclude that this destabilizing effect must go through a maximum

at intermediate subcoolings, For boiling systems, this conclusion is in agree-
ment with the experimental results of Gouse (67) who was apparently the first
to notice this effect. At super critical pressures, experimental data, which

could be used to test this conclusion, are not yet available,






IX. DISCUSSION

The instability mechanism investigated in this.paper was based on the
destabilizing effects of time lags and of density variations in the heated
duct.* It was shown that, in the near critical and in the supercritical
region, these destabilizing effects can induce flow excursions as well as
flow oscillations,

The characteristic equation, i.e,, Eq. V-15, which predicts the onset
of these instabilities is given by a third order exponehfial polynomial
with two time delays. Because of its complex nature this equation was not
solved at this time. Instead, simplified stability criteria were sought
and derived by assuming that the inlet subcooling was either low or high.
This approach seemed preferable for several reasons.

First, the simple stability criteria are more instructive and helpful
for gaining an understanding of the essential nature of the instability,

Two, the result shows that the dominance of a particular parameter re-
sults in a particular angular frequency of oscillations (see Eq. VII-40 and
VII1-17). Consequently, the cause of instability can be determined from a

trace of the flow oscillation.



Finally, simplified stability criteria such as Eq. VI-20, VII-22,
VII-42 and VIII-15 are more amenable to a qualitative study of the effects
which variations of the various parameters may have on inducing or on pre-
venting flow excursions and/or flow oscillations. Indeed, only if the
resﬁits from such a study are in agreement with experimental observations,

a detailed quantitative solution of the more complicated characteristic
equation can be justified. ‘

It was discussed in éections VI-2, VII-3 and VIII-2 that the pre-
dictions based on the simplified stability criteria are indeed in qualitative
aéreement with the experimental data. This agreement warrants therefore a
more complete study of the characteristic equation'together with a quantita-
tive comparison with the experimental data.

Last but not least the simple criteria are most useful in indicating
the improvéments and changes in the design or in the operation of the system
which would insure stable flow. Several such improvements were discussed
in Sections VI-2, VII-3 and VIII-2. It was noted there that the results of
this study indicate that low frequency thermally induced flow oscillations

In the near critical and in the supercritical pressure region, could be
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Appendix A

The Near-Critical Thermodynamic Region

The success of an investigation concerned with predicting or in-
terpreting the behaviour of a thermo-dydraulic system depends on the
availability and on the accuracy of data giving the values of thermodynamic
and transport properties of the fluid in the region of interest. It is
the purpose of this appendix to summarize, briefly,'the statu§ of present
understanding of thermodynamic phenomena that take place in a region near
the critical thermodynamic point. For additional discussion, the reader
is referred to the extensive reviews by Rice (Al) and by Hammell (A2).

Consider a fluid at a pressure slightly above the critical pressure
flowing through a heat exchanger. If the temperature of the fluid at the
entrance is considerably below the critical temperature, i.e., T'<<’Tc, the
fluid will have a density close to that of a liquid whereas at the exit,
if the fluid temperature is considerably above Tc’ the density wili ap-
proximate that of a perfect gas. Consequently, in passing throygh the
heat exchanger the fluid will undergo a change of properties from a liquid-

like fluid at the entrance to a gas-like fluid at the exit. Since the



the heat of vaporization, as well as the surface energy. all vanish.

There is nc general agreement as to the structure of the medium and
of the mechanism of phaée transition in the critical and in the supercritical
region. Different explanations and descriptioas are advanced by different
authors.

Some authors like Rosen (A3) and Semenchenko {A4) analyze the thermo-
dynami¢‘characteristics of a medium in the supercritical region by assuming
an eguation of state like ther Van der Waals' or the Dieterici equationms.

Hirschfelder, Curtis and Bird (A5} describe the fluid in the neighbor-
hcod of the critical point as consisting of a large number of clusters cf
molecules of various sizes. The system can be idealized by assuming tHat
the density can te described by a distribution function which has for its
two limits the densities of the two phases. The fluctuation in density,
which can be expected from the theo?y of fluctuations, tecomes very large'
in th2 vicinity of the critical point. These large fluctuations and the
fermation of molecular clusters in the neighborhood of this point result
in a large increase of the specific heat at ccnstant volume.

Méyer and co-workers (A€} propose a theory of condensation fased on

the cluster thecry of imperfect gases from which they predict the existence

18
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A great number of authors distinguish two phases in the supercritical
region: a heavy, liquid-like phase and a light, gas-like phase. The
difference between their results stems from the different approaches used
to locate the boundary between the two phases and from the different
descriptions of the characteristics of the phase transition.

In a preceeding sectioﬂ we have discussed already Goldmants (A7-A8)
descriptions of the supercritical region and of the similarity Setween the
heat transfer and flow processes at supercritical pressure and those that
take place at subecritical pressure during the process of boiling. However
Goldman did not formulate, quantitatively, the problem nor did he say how
and where to locate the boundary or the region between the liquid-like and
the gas-1like phase.

Followfng Goldman, Hendricks et al (A9) consider "boiling-like"
phenomena at supercritical pressures and, in analogy with boiling, they

introduce a specific volume for the fluid of the form of Eq. Al.

) - X '
U = VL + > ('u;-vf\ | (a-1)

In place of the quality they introduce a weighting function for the heavy



In the subcritical region various thermodynamic properties such
as the specific heat, the compressibility, the coefficient of thermal ex-
pansion and others change discontinuously or reach a maximum value at the
coexistence, i.e., the saturation line. This line can be therefore looked
upé; as the locus of points for these discontinuities or maxima. Conse-
quently, numerous authors consider the extension of the éatufation line

into the supercrirtiéal region to be the line which is the locus of points

where the thermodynamic properties listed below reach a maximum:

ProP | *°F

% =( 7°L) =( 02, ) =0 (A-2)
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show that this is not the case but that for a given supercritical pressure
different thermodynamic properties reach a maximum value at different
temperatures. Thus, for each of the thermodynamic properties, 1.e.,
specific heat cp, the coefficient of thermal expansion, etc., there is a
different line which represents the locus of the maxima. This raises the
question which of these lines can be regarded to be the extension of the
saturation line in the supercritical region, i.e., which of these lines ca
be considered as the boundary between the liqﬁid-like'and the gas-like

phase.

Plank (A-20) and Semenchenko (A-21) consider the line along which

=3

T

f
o

(A-7

to be the extension of the saturation line in the supercritical regionm.

Eucken (A-13), however, takes the curve represented by Eq. A-2 for this

extension;:whereas numerous authors (A-8, A-9, A-22 - A-25) take Eq. A-3.
Of particular interest to the analysis of this paper are the results

reported in (A-14, A-17, A-19 and A-16) which will be therefore discussed



nuclei of a phase within a homogeneous phase. 1In approaching the saturation
line the fluctuations increase and "micro-heterogeneities" appear in the
macroscopic, homogeneoﬁs phase. This marks the beginning of the "pre-transi-
tion region" which is characterized by the fact that various thermodynamic
properties exhibit variations which become more pronounced as the saturation
line is approached. This accounts for the anomalous effects of the proper- -
ties in the vicinity of the saturation line. Atrthe saturation line the
properties change in a discontinuous. fashion which is a characteristic of

phase transitions of the first order. As the pressure is increased the

~effect of heterogeneous fluctuations increases whereas the effect of phase
change, i.e., of the discontinuous change of properties becomes less
important and disappears at and above the critical point. Since the change
of phase at subcritical pressure is characterized by an obsorption of energy
and an exransion of volume the transition at supercritical pressure should
be characterized by the maximum values of cp and of the thermal expansion,
i.e., of ( rD\q/f)'I)p. See Figures A-1 and A-2 which show these properties
for oxygen at supercritical pressures. However, the authors of (A-19) show

from experiments that at a glven pressure the two maxima do not occur at
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which is valid for non-polar liquids when P/Pcrit 1.5. 1In the above

equation, R is the gas constant whereas~cP is the specific heat for an
g

ideal gas. This equation shows that the value of the maximum cp decreases

as the pressure is increased. The temperatures where these maxima occur

were correlated by

1 = [ —0.487 0o s
-rtc -rcrit 7 -P:_f:t (4-9)

This temperature, denoted here by Tpc’ is often referred to in the litera-

ture as either the pgeudo;crifical temperature or the Eransposed'critical

;emgerature °

Both Sirota (A-19) and Kaganer (A-18) show that the locus of the maxi-
mum values of-cp along isobars, i.e., Eq. A-3, is the extension of the sat-
uration line in the supercritical region.

Urbakh (A-17) also considers the effect of heterogéneous fluctuations
at subcritical and superériﬁlléi pressﬁres. He ;hows Eﬁat as the temperatl
is increased and the surface tension decreases the heterogeneous fluctuatic
increase and reach a maximum at the critical point. The location of the
critical point depends on the surface tensionj; - moreover, it can be changed

by introducing surface active agents. The critical point divides two regic

el Al mmem kA Al Ak dammasd abhad ey Fhn amnbrcama AL bha wmlhanas Fmnmadsd A Ay ecsdhha



in the vicinity of the saturation line. This is shown in Figure A-3 which

is the volume-temperature plane for oxygen. At a subcritical pressure,

say at Pr = 0.9, the line 1' - 2' is the phase transition of the first

order occurring at a constant temperature. The effect and magnitude of

the fluctuation in specific volume in the two pre-transition regions is

shown as the lines 1 - 1' and 2 - 2'., The fluctuation 1 - 1' i{s caused by the
formation of vapor nuclei in the pre-transition region of the liquidf
Similarly, 2 - 2' are the fluctuations caused by the formation of liquid
nuclei in the pre-transition region of the gas. It can be seen from this
Figure that at low pressures in the subcritical region the effect of

fluctuation is negligible when compared to the phase transition of the

first order. For example, at Pr = 0.5, they are a}most absent. Increas-
ing the pressure increases the effect of heterogeneous fluctuations which
reach a maximum at the critical pﬁint. At this point and above it)the
phase transition of the first order vanishes so that only the effect of
_heterogeneous fluctuations remains. Urbakh notes further than with the

phase transition and the fluctuations are associated energy requirements

Rl

which can be determined from the T - s or v - s diagrams shown on Figures A-4
and A-5, At low pressure the only energy required is heat of vaporization

for the phase transition of the first order, thus

B
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Frenkel (A-14, A-26) considers two variations: a transition of the
first order at subcritical pressure and a transition of the second order at
supercritical pressure. The first, characterized by discontinuities of

properties, is described by Clausius-Clapeyron's equation:

n-'n.
=]
I

T T (v ~v - : (4-12)
o )

and takes place at g constant temperature To' The phase transition of

the second order takes place over a témperature interval AT = T2 - Tl’
in which the properties change continuously. In this temperature interval
beth cp and ("bv/rDT)p reach a maximuw. FiguresAl andA2 show these varia-
tions for oxygen at three supercritical pressures. VAs a generalization

of the transition of the first order Frenkel formulates the equivalent

energy of transition for the second order transition, thus

. " T
2
AL = T‘tc(SZ - sl) = J A cp dT (A-13)'
T

1
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Eq. A-13 and Eq. A-14 represent the additional increase of volume and the
additional heat absorbed in going from the liquid-like state to the gas-
like state at constant pressure. In place of Clausius Clapeyron's equation
Frenkel uses the equation derived by Ehrenfest (A-27) to describe transiticn
of the second order at the 'lambda point'" of helium and at the "Curie point"

of feromagnetic metals,; thus

Ac
-3‘-% = 1 (A-15)
el (3.2)
21

_ where Acm and A (FD v/’) T)P are the maximum values of cp and of ( v/ T)P

atove the dashed lines in FiguresM» andA2. Various criticisms which have
been made with respect to Ehrenfeét equation are discussed in (A-28). Also,
varioﬁs authors (A-IB9 A-19) criticize the use of Eq. 4-15 for £he supercrit
region because the temperaéures where cP and (FDV/’DT)P reach their
respective maximum valﬁes are not the éame. Consequently, the value of th
in Eq. A-15 is somewhat arbitrary.

Semenchenko (A-4, A-16, A-29) considers the medium—in the supercritical

region to consist of two phases which are séparated by a region in which the



'

However, since in the supercritical region there is no discontinuous change

of volume and of entropy, Semenchenko notes that Eq. A-10 and A-15 must be

modified and replaced by:

and

2y
-11 (—,55)1: dv

(A-17)

{A-18)

For additional discussion of critical phenomena the reader is referred

to the extensive reviews by Rice (A-1) and by Hammell (A-2).

From the preceding review of the present understanding of thermodynamic

phenomena in the supercritical region we can make the following conclusions:

1) There is no general agreement as to the structure of the medium

and of the mechanism of phase transition in the critical and super-

critical region.

2) There is a general agreement that large variations of density and

nFf enmardfir hoot avra nraocont

o



5) There is no general cooéensoé as to the nature of phase transition
at supercritical pressures and of the énergy'fequired to bring it.
about. Three differe;t methods for evaluating this‘energy of
transition have been proposed: 1) the graphical methoo of
Urbakh (A-17) resulting in Eq. A-11; 2) thoﬂoeoondrofdo; gransition
proposed by Frenkel (A-14 A-26) given by Eq A-13, and Eq A-15; 4

‘3) the pseudo tran51tion region proposed by Semenchenko (A- 4 A-15,

' .A-29) given by Ej. &#15 and Eq. A-17. By examining the proposed metho

and equations, i.o;, Eo. A-ll, Eq. A-15 gnd A—ij, it can be seen th

these different methods will yield different values for the transit
energy.

It is evident from the preceding results that the success bf any analys

concerned with the mechanism of flow oscillations and of heat transfer at

~ supercritical pressures will depend to a great extent upon the ab111ty to

describe more accurately the thermodynamic state of arfluid and the transi-

tion phenomena that take place at supercritical pressures.
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Appendix B

The Steady'State Pressure Drop.

In this Appendix we shall derive an expression for the steady state

pressure drop of a fluid whose properties change from a liquid-like at the

- entrance to a gas-like at the exit of the heat exchanger. The derivation

and the resulting flow excursion criterion applicable to fluids at critical

and supercritical pressures were first derived by the writer in the Second

Quarterly Progress Report. They are reproduced here for reasons of completeness.

The pressure drop across a heated length L is the sum of the acceleration,
pressure drop, the frictional pressure drop and the pressure drops across
the inlet and exit flow restrictions. Since the pressure drop depends on
the fluid, it becomes nécessary to examine first property changes along the

heated ducflm

B.1 The System - Three Region AQﬁ%OXimation

The system analyzed in this Appendix is shown in the Figure B-1.

A circular duct 1is uniformly heated at a rate of Q, over a total heated

e



~ volume from a liquid-like state to a gas-like state occurs gradually over

an enthalpy interval.

In order to simplify the problem, we shall assume that the entire

transformatiqp can be approxima%ed by considerdingrgyfegA;ggiqns. In the
first region of length 1f’ between stations (:) and (:) in Figure B-1, the
heavy clusters resemble a liquid. In this region the specific volume of

the fluid is constant having a value of Ve We shall assume that the com-

plete transformation, from heavy to light clusters, takes place within the

transition length lt’ i.e., between stations (:) and (:) . In this transitioi

region the specific volume of the fluid changes from a value of v. to a value

f

of vg2 . The enthalpy chénge associated WiFh,FhiS expansion ?s giyeﬁmby B
A‘:Z'Z:i').'—-il . In thé third region of length 1g’ the light clusters
resemble a gas. The specific volume of the fluid in this region can be
approximated by that of gas and, in particular, by that of a perfect gas.

It is apparent from the discussion in Appendix A that the initial and
the final conditions of the tfansition region, i.e., the conditions at stage |

and () respectively, will depend upon the model selected for describing

the pseudo-phase transition in the supercritical region., This follows from



L

Consequently, we shall assume that both the friction factor and the heat trans-
fer are constant. The first assumption is quite reasonable if the flow remains
turbulent throughout the duct. The limitation of the second assumption may
become significant if variations of transport properties in the transition .
region have an important effect on the stability. We note, however, that

both assumptions can be removed permitting an extension of the analysis to
consider the efféct of variations, other than density, on the initiation of

flow oscillations.

B.2 The Fr1ct10na1 Pre sure Drog

" The frictional pfessure drop in the system is given by the sum of the
frictional pressure drops across the segments lf, 1t and 1g and the pressure

drops across the inlet and exit flow restrictlons, thus

AP(w) = AP, (W) 4+ AP, (W) + AP (W)

B-1

For a constant friction factor f, the pressure drop across a segment

of length 1 is given by

e

1

FUT A

|

e



Consequently, in order to evaluate the frictional pressure drops for
. ' the three segments it is necessary to ewaluate the specific volume for each
T segment. This can be done by relating first the specific volume to enthalpy
and then to express the enthalpy in terms of the heated length. This latter
relation can be obtained from energy considerations.

Denoting by Q, the total rate of energy addition to the system and by

CL the constant heat flux density, we have for a duct
o
d

)

= 93

|

B-4

oM

where ~? » is the heated perimeter. It follows from Eq. B-4 that

a _ , B-
& =91 ;

— where the total length is given by

B-6




I

and in view of Eq. B-5 we obtain
L wdi = s B-9
Q

Substituting Eq. B-4, B-3 in Eq. B-2, we obtain the pressure drop across
a heated segment where the enthalpy of the fluid changes from i to i +A1,

thus : .

AP = fL W (Y)z Vi) di B-10

For a three region approximation the relation between v(i) and i

is shown in Figure B-1l. We shall consider now each region §eparately.

a) The Liquid-Like Region

In this region-the specific volume of the fluid is constant amd equal
to v (See Figure B-1). In the segment of length 1f, the enthalpy gf ghe
fluid increases from ii to 12. The frictional pressure drop acrosé lf be-

comes then

2 :
A?11= f£ (U[\ W 4y, V('

n



Denoting by ALI‘I’ LZ'- LZ the change in enthalpy, the frictional

pressure drop in the transitional region then becomes

L
A g— C’\u) g alg, (v*'+ATU;‘}> B-13

c¢) The Gas-Like Region

In view of the assumption that in this region the fluid has the prop-
erties of a perfect gas we have, for a constant pressure process, the fol-

lowing expression for the specific volume

V, = 4+ R (o
Inserting this expression in Eq. B-10 we obtain
2
_j_L(W Wi L R4
vy g 2y (Ve 5 40s) B-15

The change of enthalpyA_i32 » can be expressed also in terms of the total

heat input thus from an energy balance

Y

N '
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B.3 The Inlet and Outlet Pressure Drops

.Denoting by ki a numerical coefficient that takes into account the
geometry of the restriction and of other losses like vena contracta etc.,
we have the inlet pressure drop

[&1>°‘ = A Uy VV]’

B-18

Similarly, we define by ke a numerical coefficient that accounts
for the geometry and the losses at the exit. The exit pressure can be then

expressed as:

_ L
B-19
which, in view of Eq. B-14 and B-16, can be also written as:
- I R 7Q _,; :
ATyy = ke W ”‘7‘+——(——A£c—AL )
y e t 2 rX
2 Py \ W L B-20

_B.h The Acceleration Pressure Dropo
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then

dp = W dv

A B-23

The total acceleration pressure drop required to accelerate a fluid of
specific volume Ve at the inlet up to the exit where it attains a specific

volume vg3 is given theréfore by

% = (4 (=)
Inserting Eq. B-14 in Eq. 24 we obtain
AP :(Aﬂ)l[ruw + % Aisﬂ‘—’% B-25
or in view of Eq. B-16 we have
W R (& _,i -
Ax. =(T) [""&2‘*15?,(W ‘Atil—-ﬂlh)-vq bre




where the coefficients a, b and ¢ are given by

- [_;___E (AL"‘*Aih)_\r‘k'l'“A[“"'Aii’-].} B-28

, X (Ai\_ﬁAih)—vc‘;_ k. lD_“"v(_ . B-29

+
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B-30

-~ fL (“_“ 2+M<7-_EA‘_,1]1 2

(Rt

The form of Eq. B-27 is relevant to the present problem because it shows

that, for some operating conditions, the pressure drop may decrease with




shown in Fig. B-1, the problem can be further simplified by considering a

two-region approximation indicated in the sketch below

Two-Region Approximation

In the two-region approximation the transition region shown in Fig: B-1

and B-2 is neglected, i.e., 1t = 0, iz = iza '1%2
therefore, that the change from a liquid-like to a gas-like fluid occurs in-

= vf. It is assumed,

stantaneously in a plane perpendicular to the flow when the enthalpy reaches

a value of i_ indicated on the sketrh ahava



]

the fluid behaves as a gas. Therefore, the transposed critical temperature
th, can be regarded as the boundary between the liquid-like and the gas-like
states. It was discussed already in Appendix A, that both Sirota (A-19)

and Kaganer (A-18) have shown that this temperature is the extemsion of the
saturation line in the supercritical region. Figure A-1 in Appendix A

shows that the transposed critical temperature increases with increasing
values of reduced pressure. It can be congluded therefore that the value

of enthalpy corresponding to this temperature and to the transition point
shown in Fig. B-2 will also increase with increasing reduced pressures.

For a two-region approximation the form of Eq. B-27 remains unchanged,
however, the coefficients a, b and ¢ given by Eq. B-28 and B-29 and B-30
reduce to: '

b

- B33 200

|;<)

L ' |
b=£ glb R Al Aim‘v(,(l""m

. ]_DA\' B-32
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which we obtain by setting Ain =0, Ayfg =0,V 4, = ve in Eq. B-28,
B-29 and B-30.

As noted by Dr. Fleming the use of the two-region appro&imation simplific
considerably the form of the coefficilents a, b and c. The three region
approximation retains however a closer similarity with phenomena that take
place at subcritical pressure. The transition region shown in Fig. B-1 can
bte regarded as corresponding to the boiling region at subcritical pressures.
The liquid and the gas region in Fig. B-1 would then correspond to the pre-
heating and to the superheating region in a once-through boiling system
where the liquid at the entrance ié subcooled and the steam at the exit is
superheated. We have noted already in Appendix A that the enthalpy change

Aiiz. may be copsidered as being equivalent to the heat of‘vaporization
hfg'
The selection of either the two or three region approxiﬁation should

be determined by the desired simplicity and accuracy. The important result
1s however the fact that, because of the negative term on the right-hand side
of Eq. 27, there exist a possibility of a decrease in pressure drop witﬁ

increasing flow in the supercritical thermodynamic region. It was shown

in the bodv of the report that such a pressure drop vs flow relatrion can
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Appendix C

The upper and lower bounds of the integrals

The integrals given by Eq. IV-94 , IV-101 and IV-111 can be all

expressed in the form of _.

us/uy
- m
T =X \_l_ U d[—u:'fﬁ)] c-1
& Uy (3) .
u,
I
which integrates in
\ - W=
| U c-2
T =X - — ) - |
- - M| is - M}
U,

where K is a coefficient and m an exponent. For example, the

integral given by Eq. IV-111 is

L
| — _Yh _s1,,
T _ & o g[_‘_‘ ] e b_&}h,‘ma} c-3
S Uyta) Uy 13)

LD 5=




However, in view of Eq. IV-34 and IV-28 we have

a(l-7) = Uy -M

C-4
and
wl3) = M+ (3= 4A)
Cc-5
d uj(%) = S OL%
C-6
whence we can express Eq. C-3 as
W Jwi
- -S‘L'b - 2—] -
— (’H"A) ¢ 1 e §h, Y _lﬁl_"n M[U![M c-7
=S D Fsen “ Byfy) G

. t
By comparing Eq. C-7 with Eq. C-1 it can be seen that they are

of the same form.



which, after some rearrangement, can be expressed in the form of

Eq. IV-111, thus

'SI!, - $
1. -f g 2 o e gl_(_ua_)r‘}
I 1D =% san N Uy

In order to obtain the upper and lower bound of Eq. IV-94,

Iv-101, IV-111 we note that Eq. C-1 can be written as

T- X F

where F is the mean value of F given by

L “fi

= | \ R
F = F(xyydy o \ 0]( 413
L-o B, lu,u) 7
a W

whence by the mean value thereom

c-9

c-10




which together with Eq. C-10 yields the upper and lower bounds given in

Eq. IV-95, IV-105 and IV-116, thus

~
TS
S—
A
-
N
~

For example, from Eq. C-7 and Eq. C-12 we obtain

- -STe _ —_n — _— ™ -sT
e o e (2] T (T M 2 e
2D S~ U by T I_D s Jb
since _ S

.3_‘_] /ﬂ= e—S(Q"L\.)

s

it can be seen that Eq. C-14 can be put in the form of Eq. Iv-116.

Cc-13

C-14

Cc-15



